Controlling Factors of Carcass Fatigue in Unbonded Flexible Pipes

Author(s):  
Upul S. Fernando ◽  
Andrew P. Roberts ◽  
Michelle Davidson

Abstract Carcass, the innermost layer of a flexible pipe structure is designed to prevent the collapse of the pressure sheath due to external pressure. Weakness, damage or failure of the carcass layer can result in collapse with associated loss of production and potentially serious risk to pipe integrity and hydrocarbon leakage to the environment. Avoiding carcass failure in service is therefore an essential consideration during the design of unbonded flexible pipes. Carcass failure is rare in service. This paper highlights the three possible failure modes and presents further analysis on the fatigue failure mode, relevant to dynamic service. Two key features of carcass manufacture are identified as causes for dynamic stress; locking of the carcass profile due to extended pitch and polymer ingress within the carcass cavity. Guidelines for the design of carcass profiles, setting safe pitch limits and appropriate barrier profile controls to mitigate carcass fatigue failure in dynamic service are presented.

Author(s):  
Linfa Zhu ◽  
Zhimin Tan ◽  
Victor Pinheiro Pupo Nogueira ◽  
Jian Liu ◽  
Judimar Clevelario

Increasing oil exploitation in deepwater regions is driving the R&D of flexible pipes which are subjected to high external pressure loads from the hydrostatic head during their installation and operation. One of the challenges of flexible pipe design for such applications is to overcome the local buckling failure modes of tensile armor layers due to the combination of high external pressure, compressive loads and pipe curvature. This paper presents the latest progress in local buckling behavior prediction theory and the qualification process of flexible pipes. First, the mechanisms of two types of buckling behaviors, radial birdcage buckling and lateral buckling, are described. For each failure mode, the analytical buckling prediction theory is presented and the driving parameters are discussed. As part of the qualification process, the ability to resist radial birdcage and lateral buckling must be demonstrated. Suitable test protocols are required to represent the installation and operation conditions for the intended applications by deep immersion performance (DIP) tests. Several flexible pipes were designed based on radial birdcage and lateral buckling prediction theory, and pipe samples were manufactured using industrial production facilities for DIP tests. The results clearly show that flexible pipes following current design guidelines are suitable for deepwater applications. An alternative in-air rig was developed to simulate the DIP tests in a controlled laboratory environment to further validate the model prediction as a continuous development.


Author(s):  
Philippe Secher ◽  
Fabrice Bectarte ◽  
Antoine Felix-Henry

This paper presents the latest progress on the armor wires lateral buckling phenomena with the qualification of flexible pipes for water depths up to 3,000m. The design challenges specific to ultra deep water are governed by the effect of the external pressure: Armor wires lateral buckling is one of the failure modes that needs to be addressed when the flexible pipe is empty and subject to dynamic curvature cycling. As a first step, the lateral buckling mechanism is described and driving parameters are discussed. Then, the program objective is presented together with flexible pipe designs: - Subsea dynamic Jumpers applications; - Sweet and Sour Service; - Internal diameters up to 11″. Dedicated flexible pipe components were selected to address the severe loading conditions encountered in water depths up to 3,000m. Hydrostatic collapse resistance was addressed by a thick inner carcass layer and a PSI pressure vault. Armor wires lateral buckling was addressed by the design and industrialization of new tensile armor wires. The pipe samples were manufactured using industrial production process in the factories in France and Brazil. The available testing protocols are then presented discussing their advantages and drawbacks. For this campaign, a combination of Deep Immersion Performances (DIP) tests and tests in hyperbaric chambers was selected. The DIP test campaign was performed End 2009 beginning 2010 in the Gulf of Mexico using one of Technip Installation Vessel. These tests replicated the actual design conditions to which a flexible pipe would be subjected during installation and operation. The results clearly demonstrated the suitability of flexible pipes as a valid solution for ultra deep water applications. In addition, the DIP tests results were compared to the tests in hyperbaric chambers giving consistent results. This campaign provided design limitations of the new designs for both 9″ and 11″ internal diameter flexible pipes, in sweet and sour service in water depths up to 3,000m.


Author(s):  
Marcelo Miyazaki ◽  
Laurent Paumier ◽  
Fabien Caleyron

This paper investigates the effect of tension on collapse performance of flexible pipes. In the design of flexible pipelines for offshore field developments, one of the failure modes being associated with external pressure and bending loadings is the hydrostatic collapse. In accordance with standards, TechnipFMC methodology for flexible pipe collapse resistance determination ensures a robust design. The model has an analytical basis, leading to a fast and straightforward use. It has been validated with more than 200 tests performed on all possible pipe constructions on straight and curved configurations. TechnipFMC and IFP Energies nouvelles have also developed and improved over the past few years a Finite Elements Model dedicated to flexible riser studies. It takes full advantage of the structure periodicities such that a whole riser can be studied with a short length and low CPU cost model associated to specific periodicity conditions. The model is able to represent bent risers in various configurations (bending cycles, internal and external pressure, axial tension, torsion) and has been used for collapse prediction of flexible risers under tension. Additionally, a specific test protocol has been developed to be able to carry out a collapse test associated to tension. The purpose of this paper is to present the collapse test result, the specific development of the model for collapse and tension and the corresponding calculations performed with the Finite Elements Model on several structures, demonstrating that there is no negative influence of tension on collapse mode. It also gives a better understanding on the interaction between tension in the armor layers and collapse phenomenon.


Author(s):  
Fabien Caleyron ◽  
Vincent Le Corre ◽  
Laurent Paumier

This paper investigates the effect of installation on collapse performance of flexible pipes. In the design of flexible pipelines for offshore field developments, one of the critical failure modes being associated with external pressure and bending loadings is the hydrostatic collapse. In accordance with standards, Technip methodology for flexible pipe collapse resistance determination ensures a robust and competitive design. The model has an analytical basis, leading to a fast and straightforward use. It has been validated with more than 200 tests performed on all possible pipe constructions on straight and curved configurations. As the industry is moving to deeper and deeper water, there is a greater need to understand all factors which could affect collapse. This includes residual effects due to the high installation loads from the laying system. As a consequence, Technip has performed several collapse tests on samples previously submitted to a loading representative of installation conditions (tension and crushing). Moreover, Technip and IFP Energies Nouvelles have developed and improved over the past few years a Finite Elements model dedicated to collapse prediction. The model accounts for the detailed geometry of the wires (carcass, pressure vault, spiral), ovalization, cyclic plasticity, contacts and residual stresses due to manufacturing. It allows to evaluate the effect of installation on the ovalization and plasticity of each layer and the collapse performance of the flexible pipe. The purpose of this paper is to present the collapse tests results and the corresponding calculations performed with the Finite Elements Model on several cases representative of Technip flexible pipes portfolio.


Author(s):  
Alfredo Gay Neto ◽  
Clóvis de Arruda Martins ◽  
Eduardo Ribeiro Malta ◽  
Rafael Loureiro Tanaka ◽  
Carlos Alberto Ferreira Godinho

Dry collapse is one of the possible failure modes of flexible pipes. It refers to the situation in which no damage occurs in the flexible pipe external sheath. In this scenario, all layers of the pipe withstand the external pressure loading in a deep-water application. Such a situation is addressed in this work, which proposes some simplified modeling techniques to represent straight and curved flexible pipes subjected to external pressure, undergoing dry collapse during simulation procedure. The results of the proposed models are compared to other reference results, from a fully three-dimensional (3D) finite element model. Good agreement has been got, even with the proposed simplifications with a large reduction in computational cost when compared to full 3D model.


Author(s):  
Ben Edmans ◽  
Giulio Alfano ◽  
Hamid Bahai ◽  
Lakis Andronicou ◽  
Ali Bahtui

Detailed stress analysis of unbonded flexible pipes has always been a challenging exercise which requires significant amount of computational resources and state of the art knowledge of flexible pipe modelling techniques. Lloyd’s Register EMEA and Brunel University have embarked on the development of a model which captures the response of the individual unbonded layers of flexible pipes using the ABAQUS finite element package employing 3D explicit and 3D implicit integration rules. The model accounts for nonlinear interaction between layers and provide the hysteresis response. The use of periodic boundary conditions to eliminate boundary effects at the pipe ends has also been investigated. The model predicts stress and strain conditions in metallic and plastic layers. These FEA predictions of the 3D non linear models are compared with the results of analytical methods for axisymmetric loads. This verification is carried out for three basic cases as follows: i) axial tension ii) internal/burst pressure iii) radial external pressure. Good agreement has been shown for stiffness and stress values predicted by the FEA and analytical formulations. Some initial results are presented for the bending behaviour in which the hysteresis obtained in the case of cyclic application of the design minimum bending radius is simulated.


Author(s):  
Martin Schäkel ◽  
John McNab ◽  
Neville Dodds ◽  
Tido Peters ◽  
Henning Janssen ◽  
...  

Unbonded flexible pipes present a mature technology for the efficient recovery and transport of hydrocarbons offshore. The substitution of metallic reinforcement layers in the multi-layered structure by thermoplastic fiber-reinforced polymer (FRP) presents a solution for self-weight issues of especially long pipes, as FRP materials display high specific strength and modulus while being resistant to external pressure and corrosion. The production of these layers is automated by the laser-assisted tape winding process without the need of additional curing steps. During the manufacturing process, several data like process temperature and consolidation pressure are continuously monitored by non-contact sensors to ensure process stability without interfering in the consolidation process. To gain additional information about the temperature distribution within the multi-layered laminate, contact temperature sensors were introduced in the tape winding process. By this method the temperature of subjacent tapes can be assessed during the continued winding process. Additionally, this paper features a new approach of utilizing winding path data for relating the time-dependent sensor data to the exact position on the produced part. The visualization of path-dependent sensor data opens up possibilities of linking quality monitoring results to manufacturing insufficiencies and potential part defects.


2013 ◽  
Vol 57 (03) ◽  
pp. 171-177
Author(s):  
Leilei Dong ◽  
Yi Huang ◽  
Qi Zhang ◽  
Gang Liu

Analytical formulations are presented to determine the bending moment-curvature relationship of a helical layer in unbonded flexible pipes. Explicit expressions describing the variation of both bending stiffness and moment as a function of the applied curvature are given. The approach takes into account the nonlinearity of the response caused by the interlayer slip. The contribution of local bending and torsion of individual helical elements to the bending behavior of helical layers is included. Theoretical results for a typical unbonded flexible pipe using the nonlinear formulation for helical layers are compared with experimental data from the available literature. Encouraging correlations are found and the importance of the initial interlayer pressures is seen. The influence of local bending and torsion of individual helical elements on the bending behavior of the entire pipe is also evaluated. The results show that the inclusion of this local behavior significantly influences the full-slip bending stiffness.


Author(s):  
Jan Rytter

The future water depth capabilities for unbonded flexible pipes is being pushed by NKT Flexibles I/S through the development of an innovative flexible pipe structure, taking full advantage of the material characteristics of metallic, polymeric and fibre reinforced materials. The fluid tight liner and possible insulation of this pipe structure are supported by an inner armour, capable of carrying the external hydrostatic pressure, clamp and crushing loads, as well as axial compression load, and an outer armour, consisting of two cross wound layers of carbon/epoxy composites, carrying the internal pressure as well as end cap forces and applied tension. A permeable and radially flexible outer layer protects the composite armour. Combining known and well-proven flexible pipe technologies and new solutions for materials, structure and functionality of the flexible pipe, positions this future product outside the present industry standards for flexible pipes, e.g. API-17J. The analysis tools used for the conventional flexible pipes are validated by NKT according to the API-17J specification. The API-17J describes load cases and corresponding allowable utilization ratios, stated as design criteria. However, this approach is not directly applicable to the composite pipe, where the same analysis tools will be used, but the material in one of the two primary load bearing layers is made of fibre reinforced polymer, a material class not covered by the API allowable utilization factors. The DNV offshore standard DNV-OS-C501 considers any offshore structure in which the load bearing material is a composite. An accompanying Recommended Practice DNV-RP-F202 for composite risers has also been issued, but is not applicable to the composite flexible pipe. The design equations of the DNV standard are formulated in the so-called Load and Resistance Factor Design (LRFD) format, where partial safety factors are applied to the load effects and to the resistance variables that enter the design equations. The DNV standard DNV-OS-C501 covers composite materials and composite metal interfaces of a structure, metal parts should be designed according to other relevant standards. The API standard can therefore be used for the metal parts. One of the challenges in using this combined approach is the different ways loads are defined in the two standards. In short, this will result in a conventional API design check of the inner armour, the polymer layers, and the secondary layers, whereas the composite tensile armour, special intermediate layers and the interfaces will be analyzed with composite specific tools based on the criteria derived from the DNV standard. The qualification procedure is described and exemplified in the following.


Author(s):  
Alfredo Gay Neto ◽  
Clóvis de Arruda Martins

When submitted to high external pressure, flexible pipes may collapse. If the external sheath is damaged, all the external pressure is directly applied on the internal polymeric layer that transmits the loading to the carcass layer, which can fail due to this effect, leading to wet collapse. This failure mode must be taken into account in a flexible pipe design. A model can be set up neglecting the influence of the pressure armor, but this assumption may underestimate the wet collapse pressure value. This work aims to include the pressure armor effect in the numerical prediction of wet collapse. The main contribution of the pressure armor to the flexible pipe resistance to collapse is to be a constraint to the radial displacement of the carcass and the internal polymeric layers. Two models were developed to find the wet collapse pressure in flexible pipes. A first study was done using a ring approximation three-dimensional (3D) finite element method (FEM) model. Comparisons are made with more simplified models using a 3D FEM equivalent ring approximation. The aim is to clarify the mechanical behavior of the pressure armor in the wet collapse scenario. Parametric studies of initial ovalization of carcass and initial gaps and interference between polymeric layer and pressure armor are made and discussed.


Sign in / Sign up

Export Citation Format

Share Document