Effect of Long-term Land Use Management Practices on Distribution of C and N Pools in Water Stable Aggregates in Alfisols

2015 ◽  
Vol 63 (1) ◽  
pp. 53 ◽  
Author(s):  
K.K. Bandyopadhyay ◽  
R. Lal
2021 ◽  
Vol 109 ◽  
pp. 105679
Author(s):  
António Carlos Pinheiro Fernandes ◽  
Lisa Maria de Oliveira Martins ◽  
Fernando António Leal Pacheco ◽  
Luís Filipe Sanches Fernandes

Insects ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 269
Author(s):  
Eleanor N. Field ◽  
Ryan E. Tokarz ◽  
Ryan C. Smith

The ecology and environmental conditions of a habitat have profound influences on mosquito population abundance. As a result, mosquito species vary in their associations with particular habitat types, yet long-term studies showing how mosquito populations shift in a changing ecological landscape are lacking. To better understand how land use changes influence mosquito populations, we examined mosquito surveillance data over a thirty-four-year period for two contrasting sites in central Iowa. One site displayed increasing levels of urbanization over time and a dramatic decline in Culex pipiens group (an informal grouping of Culex restuans, Culex pipiens, and Culex salinarius, referred to as CPG), the primary vectors of West Nile virus in central Iowa. Similar effects were also shown for other mosquito vector populations, yet the abundance of Aedes vexans remained constant during the study period. This is in contrast to a second site, which reflected an established urban landscape. At this location, there were no significant changes in land use and CPG populations remained constant. Climate data (temperature, total precipitation) were compiled for each location to see if these changes could account for altered population dynamics, but neither significantly influence CPG abundance at the respective site locations. Taken together, our data suggest that increased landscape development can have negative impacts on Culex vector populations, and we argue that long-term surveillance paired with satellite imagery analysis are useful methods for measuring the impacts of rapid human development on mosquito vector communities. As a result, we believe that land use changes can have important implications for mosquito management practices, population modeling, and disease transmission dynamics.


2018 ◽  
Vol 13 (No. 3) ◽  
pp. 140-149 ◽  
Author(s):  
Šimanský Vladimír ◽  
Lukáč Martin

Soil structure is a key determinant of many soil environmental processes and is essential for supporting terrestrial ecosystem productivity. Management of arable soils plays a significant role in forming and maintaining their structure. Between 1994 and 2011, we studied the influence of soil tillage and fertilisation regimes on the stability of soil structure of loamy Haplic Luvisol in a replicated long-term field experiment in the Dolná Malanta locality (Slovakia). Soil samples were repeatedly collected from plots exposed to the following treatments: conventional tillage (CT) and minimum tillage (MT) combined with conventional (NPK) and crop residue-enhanced fertilisation (CR+NPK). MT resulted in an increase of critical soil organic matter content (St) by 7% in comparison with CT. Addition of crop residues and NPK fertilisers significantly increased St values (by 7%) in comparison with NPK-only treatments. Soil tillage and fertilisation did not have any significant impact on other parameters of soil structure such as dry sieving mean weight diameters (MWD), mean weight diameter of water-stable aggregates (MWD<sub>WSA</sub>), vulnerability coefficient (Kv), stability index of water-stable aggregates (Sw), index of crusting (Ic), contents of water-stable macro- (WSA<sub>ma</sub>) and micro-aggregates (WSA<sub>mi</sub>). Ic was correlated with organic matter content in all combinations of treatments. Surprisingly, humus quality did not interact with soil management practices to affect soil structure parameters. Higher sums of base cations, CEC and base saturation (Bs) were linked to higher Sw values, however higher values of hydrolytic acidity (Ha) resulted in lower aggregate stability in CT treatments. Higher content of K<sup>+</sup> was responsible for higher values of MWD<sub>WSA </sub>and MWD in CT. In MT, contents of Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> were significantly correlated with contents of WSA<sub>mi </sub>and WSA<sub>ma</sub>. Higher contents of Na<sup>+</sup> negatively affected St values and positive correlations were detected between Ca<sup>2+</sup>, Mg<sup>2+ </sup>and Na<sup>+</sup> and Ic in NPK treatments.


2008 ◽  
Vol 19 (5) ◽  
pp. 516-529 ◽  
Author(s):  
R. E. Masto ◽  
P. K. Chhonkar ◽  
T. J. Purakayastha ◽  
A. K. Patra ◽  
D. Singh

2018 ◽  
Vol 7 (1.4) ◽  
pp. 39
Author(s):  
Ridima Sharma ◽  
Sakshi Tanwar ◽  
Safder Rizvi

Cities appear as a major role player in the economy of any area reflecting the global integration of its economy as they house majority of large business groups. Migratory population and urban growth are direct contributors in this economic expansion, particularly in the present-day phase of globalization which in under developed countries causes densification and instability of agriculture and other existing land use thus bringing in the need of a proper land resource management.Focused attention is needed to integrate infrastructure development in various cities and linkages should be established between the creation and management of assets through a system of reforms for long-term sustainability. Himachal Pradesh is a hill state with some most difficult terrains of the country making the preparation of complete cadastral record of land nearly impossible only 80% of land is under revenue records. Thus the amount of habitable land decreases further with around 50 % of the land under forest cover. The aim of the study is to analyze the growth of urbanisation in Himachal Pradesh along with the factors responsible. This growth pattern can later be used to formulate proper land use management and infrastructure development policies for equitable development of the area.


2020 ◽  
Author(s):  
Victoria Janes-Bassett ◽  
Jessica Davies ◽  
Richard Bassett ◽  
Dmitry Yumashev ◽  
Ed Rowe ◽  
...  

&lt;p&gt;Throughout the Anthropocene, the conversion of land to agriculture and atmospheric deposition of nitrogen have resulted in significant changes to biogeochemical cycling, including soil carbon stocks. Quantifying these changes is complex due to a number of influential factors (including climate, land use management, soil type) and their interactions. As the largest terrestrial store of carbon, soils are a key component in climate regulation. In addition, soil carbon storage contributes to numerous ecosystem services including food provision. It is therefore imperative that we understand changes to soil carbon stocks, and provide effective strategies for their future management.&lt;/p&gt;&lt;p&gt;Modelling soil systems provides a means to estimate changes to soil carbon stocks. Due to linkages between the carbon cycle and other major nutrient cycles (notably nitrogen and phosphorus which often limit the productivity of ecosystems), models of integrated nutrient cycling are required to understand the response of the carbon cycle to global pressures. Simulating the impacts of land use changes requires capacity to model both semi-natural and intensive agricultural systems.&lt;/p&gt;&lt;p&gt;In this study, we have developed an integrated carbon-nitrogen-phosphorus model of semi-natural systems to include representation of both arable and grassland systems, and a range of agricultural management practices. The model is applicable to large spatial scales, as it uses readily available input data and does not require site-specific calibration. &amp;#160;After being validated both spatially and temporally using data from long-term experimental sites across Northern-Europe, the model was applied at a national scale throughout the United Kingdom to assess the impacts of land use change and management practices during the last two centuries. Results indicate a decrease in soil carbon in areas of agricultural expansion, yet in areas of semi-natural land use, atmospheric deposition of nitrogen has resulted in increased net primary productivity and subsequently soil carbon. The results demonstrate anthropogenic impacts on long-term nutrient cycling and soil carbon storage, and the importance of integrated nutrient cycling within models.&lt;/p&gt;


2003 ◽  
Vol 128 (2) ◽  
pp. 277-284 ◽  
Author(s):  
Jose E. Sanchez ◽  
Charles E. Edson ◽  
George W. Bird ◽  
Mark E. Whalon ◽  
Thomas C. Willson ◽  
...  

Designing and implementing more productive, nutrient-efficient, and environmentally sound orchard management systems requires a better understanding of plant and soil responses to more biologically driven management practices. This study explored the effect of orchard floor and N management on soil organic C and N, populations of nematodes, NO3 leaching, and yields in tart cherry (Prunus cerasus L. `Montmorency') production. A baseline conventional orchard system consisting of an herbicide-treated tree row and a full rate of N fertilizer was compared to two modified-conventional and ten alternative orchard floor and N management systems. Living ground cover and the use of mulch with or without composted manure increased total C and the active C and N pools in the soil. For instance, supplemental mulch or mulch applied using a side-delivery mower increased soil C by >20% above the conventional baseline. The size of the active C pool increased 45% and 60% with the use of the species mix 2 ground cover and compost, respectively. Increases in the active N pool ranged from a low of 25% in the soils using mulch or a ground cover mix to a high of 60% when compost was used. As a result, the ability of these soils to provide N to growing plants was enhanced. Total soil N increased in the treatment using natural weeds as ground cover and the full rate of N fertilizer. It is likely that weeds were able to convert significant amounts of fertilizer N into organic forms. Increasing the active C and N pools stimulates microbial activity, and may favor populations of nonplant parasitic nematodes over plant parasitic species. Using a trunk-to-trunk cover crop mix under the cherry trees reduced NO3 leaching by >90% compared to a conventional, herbicide treated soil, even when N fertilizer was used at full rate. Nitrate leaching also dramatically diminished when N fertilizer was fertigated at a reduced rate or when compost was used as N source. Alternative orchard floor and N management did not reduce yields when compared to the baseline conventional treatment.


Author(s):  
Jan Paul Lindner ◽  
Ulrike Eberle ◽  
Eva Knuepffer ◽  
Carla R. V. Coelho

Abstract Purpose The impact of land use on biodiversity is a topic that has received considerable attention in life cycle assessment (LCA). The methodology to assess biodiversity in LCA has been improved in the past decades. This paper contributes to this progress by building on the concept of conditions for maintained biodiversity. It describes the theory for the development of mathematical functions representing the impact of land uses and management practices on biodiversity. Methods The method proposed here describes the impact of land use on biodiversity as a decrease in biodiversity potential, capturing the impact of management practices. The method can be applied with weighting between regions, such as ecoregions. The biodiversity potential is calculated through functions that describe not only parameters which are relevant to biodiversity, for example, deadwood in a forest, but also the relationships between those parameters. For example, maximum biodiversity would hypothetically occur when the nutrient balance is ideal and no pesticide is applied. As these relationships may not be readily quantified, we propose the use of fuzzy thinking for biodiversity assessment, using AND/OR operators. The method allows the inclusion of context parameters that represent neither the management nor the land use practice being investigated, but are nevertheless relevant to biodiversity. The parameters and relationships can be defined by either literature or expert interviews. We give recommendations on how to create the biodiversity potential functions by providing the reader with a set of questions that can help build the functions and find the relationship between parameters. Results and discussion We present a simplified case study of paper production in the Scandinavian and Russian Taiga to demonstrate the applicability of the method. We apply the method to two scenarios, one representing an intensive forestry practice, and another representing lower intensity forestry management. The results communicate the differences between the two scenarios quantitatively, but more importantly, are able to provide guidance on improved management. We discuss the advantages of this condition-based approach compared to pre-defined intensity classes. The potential drawbacks of defining potential functions from industry-derived studies are pointed out. This method also provides a less strict approach to a reference situation, consequently allowing the adequate assessment of cases in which the most beneficial biodiversity state is achieved through management practices. Conclusions The originality of using fuzzy thinking is that it enables land use management practices to be accounted for in LCA without requiring sub-categories for different intensities to be explicitly established, thus moving beyond the classification of land use practices. The proposed method is another LCIA step toward closing the gap between land use management practices and biodiversity conservation goals.


2013 ◽  
Vol 64 (5) ◽  
pp. 401 ◽  
Author(s):  
Robert J. Wilcock ◽  
Ross M. Monaghan ◽  
John M. Quinn ◽  
M. S. Srinivasan ◽  
David J. Houlbrooke ◽  
...  

Five streams in catchments with pastoral dairy farming as the dominant land use were monitored for periods of 7–16 years to detect changes in response to adoption of best management practices (BMPs). Stream water quality was degraded at the start with respect to N, P, suspended solids (SS) and E. coli concentrations, and was typical of catchments with intensive pastoral agriculture land use. Trend analysis showed a decrease in SS concentration for all streams, generally increasing water clarity, and lower E. coli concentrations in three of the streams. These are attributed to improved stream fencing (cattle exclusion) and greater use of irrigation for treated effluent disposal with less reliance on pond systems discharging to streams. Linkages between water quality and farm actions based on survey data were used to develop BMPs that were discussed at stakeholder workshops. Generic and specific BMPs were developed for the five catchments. The 3–7 year periodicity of major climate cycles, as well as market forces and a slow rate of farmer adoption of simple BMPs mean that monitoring programs in New Zealand need to be much longer than 10 years to detect changes caused by farmer actions. Long-term monitoring is also needed to detect responses to newly legislated requirements for improved water quality.


Sign in / Sign up

Export Citation Format

Share Document