One Pot, Four-Component for the Synthesis of Pyrano Pyrazole Derivatives using TBAHS as Green Catalyst and their Biological Evaluation

2017 ◽  
Vol 10 (6) ◽  
pp. 745
Author(s):  
Vijay N. Bhosale ◽  
Gopinath S. Khansole ◽  
Jaman A. Angulwar ◽  
Sunil S. Choudhare ◽  
Ashok R. Karad ◽  
...  
2019 ◽  
Vol 4 (31) ◽  
pp. 9033-9039 ◽  
Author(s):  
Elham Ali ◽  
M. Reza Naimi‐Jamal ◽  
Ramin Ghahramanzadeh

Author(s):  
Hadis Khodadad ◽  
Farhad Hatamjafari ◽  
Khalil Pourshamsian ◽  
Babak Sadeghi

Aim and Objective: Microwave-assisted condensation of acetophenone 1 and aromatic aldehydes 2 gave chalcone analogs 3, which were cyclized to pyrazole derivatives 6a-f via the reaction with hydrazine hydrate and oxalic acid in the presence of the catalytic amount of acetic acid in ethanol. Materials and Methods: The structural features of the synthesized compounds were characterized by melting point, FT-IR, 1H, 13C NMR and elemental analysis. Results: The antibacterial activities of the synthesized pyrazoles was evaluated against three gram-positive bacteria such as Enterococcus durans, Staphylococcus aureus, Bacillus subtilis and two gram-negative bacteria such as Escherichia coli and Salmonella typhimurium. Conclusion: All the synthesized pyrazoles showed relatively high antibacterial activity against S. aureus strain and none of them demonstrated antibacterial activity against E. coli.


2020 ◽  
Vol 17 (10) ◽  
pp. 772-778
Author(s):  
Abdulrhman Alsayari ◽  
Abdullatif Bin Muhsinah ◽  
Yahya I. Asiri ◽  
Jaber Abdullah Alshehri ◽  
Yahia N. Mabkhot ◽  
...  

The aim of this study was to synthesize and evaluate the biological activity of pyrazole derivatives, in particular, to perform a “greener” one-pot synthesis using a solvent-free method as an alternative strategy for synthesizing hydrazono/diazenyl-pyridine-pyrazole hybrid molecules with potential anticancer activity. Effective treatment for all types of cancers is still a long way in the future due to the severe adverse drug reactions and drug resistance associated with current drugs. Therefore, there is a pressing need to develop safer and more effective anticancer agents. In this context, some hybrid analogues containing the bioactive pharmacophores viz. pyrazole, pyridine, and diazo scaffolds were synthesized by one-pot method. Herein, we describe the expedient synthesis of pyrazoles by a onepot three-component condensation of ethyl acetoacetate/acetylacetone, isoniazid, and arenediazonium salts under solvent-free conditions, and the evaluation of their cytotoxicity using a sulforhodamine B assay on three cancer cell lines. Molecular docking studies employing tyrosine kinase were also carried out to evaluate the binding mode of the pyrazole derivatives under study. 1-(4-Pyridinylcarbonyl)-3- methyl-4-(2-arylhydrazono)-2-pyrazolin-5-ones and [4-(2-aryldiazenyl)-3,5-dimethyl-1H-pyrazol-1- yl]-4-pyridinylmethanones, previously described, were prepared using an improved procedure. Among these ten products, 1-isonicotinoyl-3-methyl-4-[2-(4-nitrophenyl)hydrazono]-2-pyrazolin-5-one (1f) displayed promising anticancer activity against the MCF-7, HepG2 and HCT-116 cell lines, with an IC50 value in the range of 0.2-3.4 μM. In summary, our findings suggest that pyrazoles containing hydrazono/ diazenyl and pyridine pharmacophores constitute promising scaffolds for the development of new anticancer agents.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ravi Bansal ◽  
Pradeep K. Soni ◽  
Neha Gupta ◽  
Sameer S. Bhagyawant ◽  
Anand K. Halve

Aims: In this article we have developed an eco-friendly one-pot multi-component reaction methodology was employed for the green synthesis of functionalized pyrazole derivatives viz cyclo-condensation of aromatic aldehydes, ethyl acetoacetate and phenyl hydrazine and/or hydrazine hydrate in the presence of cetyltrimethylammoniumbromide (CTAB) at 90°C temperature in aqueous medium. Method: In the present protocol we developed a green method for the synthesis of functionalized pyrazole derivatives through one-pot, multi-component cyclo-condensation of aromatic aldehydes, phenyl hydrazine or hydrazine hydrate and ethyl acetoacetate using cetyltrimethylammoniumbromide (CTAB) as a catalyst in water as solvent. Our methodology confers advantages such as short reaction time, atom economy, purification of product without using column chromatographic and hazardous solvent. The reaction is being catalyzed by cetyltrimethylammoniumbromide (CTAB) and thus products are formed under the green reaction conditions. Results: Initially the reaction of benzaldehyde and phenylhydrazine with ethyl acetoacetate was carried out in water at room temperature in the absence of the catalyst; no product was obtained after 24 h (Table 1 entry 1). When the reaction was carried out using L-proline as catalyst in ethanol at 70°C the yield of product was 20. Conclusion: This research not only provides a green and efficient method for the synthesis of sulfinic esters but also shows new applications of electrochemistry in organic synthesis. We consider that this green and efficient synthetic protocol used to prepare sulfinic esters will have good applications in future. In conclusion, we have developed successfully a green and efficient one-pot multi-component methodology for the synthesis of substituted pyrazoles using CTAB as a catalyst in water as solvent with excellent yields. Purifications of compounds were achieved without the use of traditional chromatographic procedures. This methodology has advantages of operational simplicity, clean reaction profiles and relatively broad scope which make it more attractive for the diversity oriented synthesis of these heterocyclic libraries. In this methodology we suggest the further alternative possibility for formation of substituted pyrazoles. The compound 7h can be used as an anticancer drug in pharma industry.


RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 40508-40513
Author(s):  
Sahar Saadat Hosseinikhah ◽  
Bi Bi Fatemeh Mirjalili ◽  
Naeimeh Salehi ◽  
Abdolahamid Bamoniri

Gum arabic-OPO3H2 (GA-OPO3H2) as a unique natural-based green catalyst was synthesized by the reaction of phosphorus pentoxide with gum arabic.


Sign in / Sign up

Export Citation Format

Share Document