Development of aerostatic bearing system for balancing of ultra-high speed turboexpander rotors used in helium liquefiers/refrigerators

2019 ◽  
Vol 44 (1) ◽  
pp. 36
Author(s):  
Ankit Jain ◽  
Mohananand M. Jadhav ◽  
Naveen Kumar ◽  
Rajendran S. Menon ◽  
Anindya Chakravarty ◽  
...  
2015 ◽  
Vol 656-657 ◽  
pp. 652-657 ◽  
Author(s):  
Norifumi Miyanaga ◽  
Jun Tomioka

It is absolutely important for ultra-compact rotational machineries to achieve sable shaft rotation at ultra-high-speed. This paper discussed herringbone-grooved aerodynamic journal bearing systems developed for the purpose. In this system, the bearings are supported by rubber-O-rings for accurate and stable operations. To grasp the possibility for stabilization, two types of O-rings with different stiffness and damping properties under bearing supporting were tested in the experiment. As the results, the bearing system demonstrated the maximum rotational speed over 460,000 rpm without unstable phenomenon called whirl. However, the difference in rubber O-rings definitely affected the stability of the bearing system.


Author(s):  
Jiale Tian ◽  
Baisong Yang ◽  
Sheng Feng ◽  
Lie Yu ◽  
Jian Zhou

In this study, an ultra-high-speed rotor–gas foil-bearing system is designed and applied to a permanent magnet synchronous motor. Gas foil journal bearings and gas foil thrust bearings are used to provide journal and axial support to the rotor, respectively. The bearings are analyzed theoretically considering the nonlinear deflection of the top foil, and the static and dynamic characteristics are obtained with which the rotor dynamic performances of the tested rotor are calculated using the finite element method. During the experiment, the permanent magnet synchronous motor can operate stably at 94,000 r/min, which demonstrates a great dynamic performance of the gas foil bearings and the stability that it provides to the entire system. The sub-synchronous vibration also occurs when the rotating speed reaches 60,000 r/min and as the speed keeps rising, the amplitude of such vibration increases, which will contribute to the destabilization of the rotor–gas foil-bearing system. Finally, the axial force of the rotor is calculated theoretically as well as measured directly by four micro force sensors mounted in the thrust end cover of the permanent magnet synchronous motor. The experimental results presented in this article are expected to provide a useful guide to the design and analysis of the rotor–gas foil-bearing system and high-speed permanent magnet synchronous motor.


2009 ◽  
Vol E92-C (7) ◽  
pp. 922-928 ◽  
Author(s):  
Kikuo MAKITA ◽  
Kazuhiro SHIBA ◽  
Takeshi NAKATA ◽  
Emiko MIZUKI ◽  
Sawaki WATANABE

Author(s):  
Ryoken Masuda ◽  
Manabu Horiuchi ◽  
Mitsuhide Sato ◽  
Yinggang Bu ◽  
Masami Nirei ◽  
...  

2018 ◽  
Author(s):  
Yi Chen Mazumdar ◽  
Michael E. Smyser ◽  
Jeffery Dean Heyborne ◽  
Daniel Robert Guildenbecher

1998 ◽  
Vol 34 (25) ◽  
pp. 2442 ◽  
Author(s):  
K. Murata ◽  
T. Otsuji ◽  
Y. Imai
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document