scholarly journals Piston Rings and Cylinder Liners of Mitsubishi UE Diesel Engines

2009 ◽  
Vol 44 (2) ◽  
pp. 239-246
Author(s):  
Yuji WAKATSUKI ◽  
Tomokatsu YAMAMOTO

The piston seal that separates the hostile environment of the combustion chamber from the crankcase that contains the lubricant is an essential machine element in reciprocating engines. The sealing force pressing the piston rings against the cylinder liner varies with the combustion chamber pressure to form an effective self-adjusting mechanism. The conjunctions between piston rings and cylinder liners are thus subjected to cyclic variations of load, entraining velocity and effective lubricant temperature as the piston reciprocates within the cylinder. Recent theoretical and experimental studies have confirmed that piston rings enjoy hydrodynamic lubrication throughout most of the engine cycle, but that a transition to mixed or boundary lubrication can be expected near top dead centre. The purpose of the present paper is to examine the suggestion that elastohydrodynamic lubrication might contribute to the tribological performance of the piston seal, particularly near top dead centre. The mode of lubrication in eight four-stroke and six two-stroke diesel engines is assessed in terms of the dimensionless viscosity and elasticity parameters proposed by Johnson (1970), and the associated map of lubrication régimes. The survey indicates unequivocally that elastohydrodynamic action can be expected during part of the stroke in all the engines considered. In the second part of the paper a detailed examination of the influence of elastohydrodynamic action in one particular engine is presented to confirm the general findings recorded in the study of lubrication régimes. Current analysis of the lubrication of rigid piston rings already takes account of the variation of surface temperature along the cylinder liner and its influence upon lubricant viscosity. It is shown that, when the enhancing influence of pressure upon viscosity is added to the analysis of rigid piston rings, the predicted cyclic minimum film thickness is more than doubled. Full elastohydrodynamic action, involving both local distortion of the elastic solids and the influence of pressure upon viscosity, results in a fourfold increase in film thickness. It is further shown that it is necessary to take account of the variation of squeeze-film velocity throughout the lubricated conjunction at each crank angle if reliable predictions of film shape and thickness are to be achieved. It is thus concluded that the wave of elastic deformation, which ripples up and down the cylinder liners many times each second in diesel engines, together with the associated local elastic deformations on the piston rings themselves, combine with the influence of pressure upon lubricant viscosity to enhance the minimum oil film thickness in the piston seal by elastohydrodynamic action.


MTZ worldwide ◽  
2005 ◽  
Vol 66 (7-8) ◽  
pp. 20-23 ◽  
Author(s):  
Johannes Esser ◽  
Steffen Hoppe ◽  
Rudolf Linde ◽  
Frank Münchow
Keyword(s):  

2018 ◽  
Vol 70 (4) ◽  
pp. 687-699 ◽  
Author(s):  
Thomas Wopelka ◽  
Ulrike Cihak-Bayr ◽  
Claudia Lenauer ◽  
Ferenc Ditrói ◽  
Sándor Takács ◽  
...  

Purpose This paper aims to investigate the wear behaviour of different materials for cylinder liners and piston rings in a linear reciprocating tribometer with special focus on the wear of the cylinder liner in the boundary lubrication regime. Design/methodology/approach Conventional nitrided steel, as well as diamond-like carbon and chromium nitride-coated piston rings, were tested against cast iron, AlSi and Fe-coated AlSi cylinder liners. The experiments were carried out with samples produced from original engine parts to have the original surface topography available. Radioactive tracer isotopes were used to measure cylinder liner wear continuously, enabling separation of running-in and steady-state wear. Findings A ranking of the material pairings with respect to wear behaviour of the cylinder liner was found. Post-test inspection of the cylinder samples by scanning electron microscopy (SEM) revealed differences in the wear mechanisms for the different material combinations. The results show that the running-in and steady-state wear of the liners can be reduced by choosing the appropriate material for the piston ring. Originality/value The use of original engine parts in a closely controlled tribometer environment under realistic loading conditions, in conjunction with continuous and highly sensitive wear measurement methods and a detailed SEM analysis of the wear mechanisms, forms an intermediate step between engine testing and laboratory environment testing.


Author(s):  
Tokuro Sato ◽  
Hideki Saito ◽  
Koji Korematsu ◽  
Junya Tanaka

Abstract The wear of piston rings in the diesel engines with EGR system is studied experimentally. In order to clarify the effect of PM on the wear, the wear of the piston rings in the test engine is measured, (1) when the non-soluble in the lubricating oil is removed by the oil filters, (2) when PM in the re-circulating gas is removed by the DPF, (3) when the carbon black is added in the lubricating oil. The experimental results are discussed with the measured time history of kinematic viscosity, total base number, total acid number, ZDTP survival rate, and carbon residual content and its particle size in the engine oil.


Author(s):  
Edney Deschauer Rejowski ◽  
Edmo Soares ◽  
Ingo Roth ◽  
Steffen Rudolph

With the increase of combustion loading and the trend to reduce engine size, there is a need for thinner but stronger wet cylinder liners. While most of the current cylinder liners are made of gray cast iron, due to its good tribological behavior, machinability performance and competitive price, alternative casting materials like compact graphite iron, ductile iron and even steel are being considered to cover the future engine demands. In this paper, a new ductile iron (DI) cast material for wet cylinder liners is presented. The material has about 60 and 70% higher limits respectively for tensile stress and fatigue resistance as compared to conventional gray cast irons, but without penalty on the tribological properties. There is also a potential improvement to avoid cavitation on the outside surface due to its higher young modulus, which also equates to a higher stiffness. The tested cylinder liners were induction hardened on the running surface and a slide hone process was used to improve wear and scuffing resistance. The liners were tested in a HDD engine with PCP of 245 bar and showed similar wear as observed with conventional cylinder liners of gray cast iron material. The DI cylinder liners were also tested in an abusive scuffing engine test without any concern. The improved mechanical properties of the described new DI material introduce possibilities to reduce liner wall thickness or increase specific output. The preliminary evaluation in this paper showed that this new material is feasible for HDD diesel engines with PCP up to 250 bar. In cases that the customer needs to increase the bore diameter for output reasons there is the potential to reduce the liner wall thickness up to 25% based on high mechanical properties (UTS, Young Modulus and fatigue strength). In both cases, it’s recommended a FEA analysis to support the new component design.


Wear ◽  
2007 ◽  
Vol 263 (7-12) ◽  
pp. 1158-1164 ◽  
Author(s):  
J. Keller ◽  
V. Fridrici ◽  
Ph. Kapsa ◽  
S. Vidaller ◽  
J.F. Huard

Sign in / Sign up

Export Citation Format

Share Document