scholarly journals Finite element analysis of long-term changes of the breast after augmentation mammoplasty: Implications for implant design

2019 ◽  
Vol 46 (4) ◽  
pp. 386-389 ◽  
Author(s):  
Yujin Myung ◽  
Jong-Gu Lee ◽  
Maenghyo Cho ◽  
Chan Yeong Heo
Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3444
Author(s):  
Avram Manea ◽  
Grigore Baciut ◽  
Mihaela Baciut ◽  
Dumitru Pop ◽  
Dan Sorin Comsa ◽  
...  

Background: Once inserted and osseointegrated, dental implants become ankylosed, which makes them immobile with respect to the alveolar bone. The present paper describes the development of a new and original implant design which replicates the 3D physiological mobility of natural teeth. The first phase of the test followed the resistance of the implant to mechanical stress as well as the behavior of the surrounding bone. Modifications to the design were made after the first set of results. In the second stage, mechanical tests in conjunction with finite element analysis were performed to test the improved implant design. Methods: In order to test the new concept, 6 titanium alloy (Ti6Al4V) implants were produced (milling). The implants were fitted into the dynamic testing device. The initial mobility was measured for each implant as well as their mobility after several test cycles. In the second stage, 10 implants with the modified design were produced. The testing protocol included mechanical testing and finite element analysis. Results: The initial testing protocol was applied almost entirely successfully. Premature fracturing of some implants and fitting blocks occurred and the testing protocol was readjusted. The issues in the initial test helped design the final testing protocol and the new implants with improved mechanical performance. Conclusion: The new prototype proved the efficiency of the concept. The initial tests pointed out the need for design improvement and the following tests validated the concept.


1979 ◽  
Vol 7 (1) ◽  
pp. 169-175 ◽  
Author(s):  
A. M. Weinstein ◽  
J. J. Klawitter ◽  
S. D. Cook

2020 ◽  
Vol 8 (5) ◽  
pp. 358 ◽  
Author(s):  
Yusak Oktavianus ◽  
Massoud Sofi ◽  
Elisa Lumantarna ◽  
Gideon Kusuma ◽  
Colin Duffield

A precast reinforced concrete (RC) T-beam located in seaport Terminal Peti Kemas (TPS) Surabaya built in 1984 is used as a case study to test the accuracy of non-destructive test techniques against more traditional bridge evaluation tools. This bridge is mainly used to connect the berth in Lamong gulf and the port in Java Island for the logistic purposes. The bridge was retrofitted 26 years into its life by adding two strips of carbon fiber reinforced polymer (CFRP) due to excessive cracks observed in the beams. Non-destructive field measurements were compared against a detailed finite element analysis of the structure to predict the performance of the girder in terms of deflection and moment capacity before and after the retrofitting work. The analysis was also used to predict the long-term deflections of the structure due to creep, crack distribution, and the ultimate moment capacity of the individual girder. Moreover, the finite element analysis was used to predict the deflection behavior of the overall bridge due to vehicle loading. Good agreement was obtained between the field measurement and the analytical study. A new service life of the structure considering the corrosion and new vehicle demand is carried out based on field measurement using non-destructive testing. Not only are the specific results beneficial for the Indonesian port authority as the stakeholder to manage this structure, but the approach detailed also paves the way for more efficient evaluation of bridges more generally over their service life.


1987 ◽  
Vol 110 ◽  
Author(s):  
James B. Koeneman

AbstractPredicting the stress state in bones is important to the understanding of bone remodeling and the long-term reliability of total joint implants. Beam theory, 2-D and 3-D finite element analysis have been used to calculate stress distributions. These finite element analyses of bone structures are progressing from crude models for which the clinical relevance has been questioned to an important tool which is necessary to understand stress related bone changes.


2005 ◽  
Vol 288-289 ◽  
pp. 657-660
Author(s):  
Xue Jun Wang ◽  
R. Wang ◽  
J.M. Luo ◽  
Ji Yong Chen ◽  
Xing Dong Zhang

It is important to obtain mechanical coupling between dental implants and bone, because the lack of mechanical coupling may cause bone loss around implants. In this research, a new cylindrical dental implant composed of three parts was designed to offer favored mechanical environment for the bone. A special gap structure changed the means of the stress transmission and decreased the stress in the cortical bone around the neck of the implant. Through finite element analysis (FEA) of stress distribution in bone around implant-bone interface, the advantages of this new implant (reducing stress concentration in cervical cortex and satisfying varieties of clinical needs) were verified. The peak stress for the new design was about 30 percent less than that of the traditional implant and the flexibility of the design was also confirmed by changing the gap depth and the wall thickness.


Sign in / Sign up

Export Citation Format

Share Document