NCCN Task Force Report: Management of Dermatologic and Other Toxicities Associated With EGFR Inhibition in Patients With Cancer

2009 ◽  
Vol 7 (Suppl_1) ◽  
pp. S-5-S-21 ◽  
Author(s):  
Barbara Burtness ◽  
Milan Anadkat ◽  
Surendra Basti ◽  
Miranda Hughes ◽  
Mario E. Lacouture ◽  
...  

This NCCN Task Force Report describes the management of dermatologic and ocular toxicities that occur in patients treated with epidermal growth factor receptor (EGFR) inhibitors. Task force members are from NCCN member institutions and include oncologists, dermatologists, an ophthalmologist, and a mid-level oncology provider. This report describes commonly used therapies that the task force agreed are appropriate standards of care for dermatologic and ophthalmologic toxicities associated with EGFR inhibitors, which generally are supported only by anecdotal evidence. Few recommendations are evidence based; however, some commonly used therapies have data supporting their use. Conclusions from completed clinical trials are generally limited by the small numbers of patients enrolled. The information in this report is based on available published data on treating toxicities associated with EGFR inhibitors, data from treatment of clinically similar toxicities from different etiologies, and expert opinion among the NCCN Task Force members.

2019 ◽  
Vol 20 (19) ◽  
pp. 4700 ◽  
Author(s):  
Tao Wang ◽  
Svetlana Philippovich ◽  
Jun Mao ◽  
Rakesh N. Veedu

Epidermal growth factor receptor (EGFR) is associated with the progression of a wide range of cancers including breast, glioma, lung, and liver cancer. The observation that EGFR inhibition can limit the growth of EGFR positive cancers has led to the development of various EGFR inhibitors including monoclonal antibodies and small-molecule inhibitors. However, the reported toxicity and drug resistance greatly compromised the clinical outcome of such inhibitors. As a type of chemical antibodies, nucleic acid aptamer provides an opportunity to overcome the obstacles faced by current EGFR inhibitors. In this study, we have developed and investigated the therapeutic potential of a 27mer aptamer CL-4RNV616 containing 2′-O-Methyl RNA and DNA nucleotides. Our results showed that CL-4RNV616 not only displayed enhanced stability in human serum, but also effectively recognized and inhibited the proliferation of EGFR positive Huh-7 liver cancer, MDA-MB-231 breast cancer, and U87MG glioblastoma cells, with an IC50 value of 258.9 nM, 413.7 nM, and 567.9 nM, respectively. Furthermore, TUNEL apoptosis assay revealed that CL-4RNV616 efficiently induced apoptosis of cancer cells. In addition, clinical breast cancer biopsy-based immunostaining assay demonstrated that CL-4RNV616 had a comparable detection efficacy for EGFR positive breast cancer with commonly used commercial antibodies. Based on the results, we firmly believe that CL-4RNV616 could be useful in the development of targeted cancer therapeutics and diagnostics.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Shaad E. Abdullah ◽  
Missak Haigentz ◽  
Bilal Piperdi

Epidermal growth factor receptor (EGFR) inhibition has now been well established as an effective treatment for various cancers. The EGFR belongs to the ErbB family of tyrosine kinase receptors which regulate tumor cell differentiation, survival and proliferation. Activation of EGFR drives tumorigenesis in lung, head and neck, colorectal and pancreatic cancers. Irrespective of the type of cancer being treated and the mechanism by which tumor EGFR drives tumorigenesis, the major side effect of EGFR inhibition is a papulopustular (also described as maculopapular or acneiform) rash which occurs in about two thirds of treated patients. Interestingly, this rash has been commonly correlated with better clinical outcomes (objective tumor response and patient survival). The pathophysiology of dermatological toxicity from EGFR inhibitors is an important area of clinical research, and the proper management of the rash is essential to increase the therapeutic index from this class of drugs. In this paper, we review the dermatologic toxicities associated with EGFR inhibitors with an emphasis on its pathophysiology and clinical management.


2006 ◽  
Vol 24 (17) ◽  
pp. 2666-2672 ◽  
Author(s):  
Shailaja Kalyankrishna ◽  
Jennifer R. Grandis

Epidermal growth factor receptor (EGFR) is overexpressed in several epithelial malignancies, including head and neck squamous cell carcinoma (HNSCC), which exhibits EGFR overexpression in up to 90% of tumors. EGFR ligands such as transforming growth factor alpha are also overexpressed in HNSCC. EGFR plays a critical role in HNSCC growth, invasion, metastasis and angiogenesis. However, EGFR inhibitors as monotherapy have yielded only modest clinical outcomes. Potential mechanisms for lack of response to EGFR inhibition in HNSCC include constitutive activation of signaling pathways independent of EGFR, as well as genetic aberrations causing dysregulation of the cell cycle. EGFR-directed therapy may be optimized by identifying and selecting those HNSCC patients most likely to benefit from EGFR inhibition. Resistance to EGFR inhibition may be circumvented by combination therapy employing EGFR inhibitors together with other treatment modalities.


2020 ◽  
Vol 11 (8) ◽  
pp. 923-939
Author(s):  
Sourav Kalra ◽  
Gaurav Joshi ◽  
Manvendra Kumar ◽  
Sahil Arora ◽  
Harsimrat Kaur ◽  
...  

Imidazole-based epidermal growth factor receptor (EGFR) inhibitors were computationally designed and synthesized.


Author(s):  
Swathi R. Shetty ◽  
Ragini Yeeravalli ◽  
Tanya Bera ◽  
Amitava Das

: Epidermal growth factor receptor (EGFR), a type-I transmembrane protein with intrinsic tyrosine kinase activity is activated by peptide growth factors such as EGF, epigen, amphiregulin, etc. EGFR plays a vital role in regulating cell growth, migration, and differentiation in various tissue-specific cancers. It has been reported to be overexpressed in lung, head, and neck, colon, brain, pancreatic, and breast cancer that trigger tumor progression and drug resistance. EGFR overexpression alters the signaling pathway and induces cell division, invasion, and cell survival. Our prior studies demonstrated that EGFR inhibition modulates chemosensitivity in breast cancer stem cells thereby serving as a potential drug target for breast cancer mitigation. Tyrosine kinase inhibitors (Lapatinib, Neratinib) and monoclonal antibodies (Trastuzumab) targeting EGFR have been developed and approved by the US FDA for clinical use against breast cancer. This review highlights the critical role of EGFR in breast cancer progression and enumerates the various approaches being undertaken to inhibit aggressive breast cancers by suppressing the downstream pathways. Further, the mechanisms of action of potential molecules at various stages of drug development as well as clinically approved drugs for breast cancer treatment are illustrated.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Muhammad Tukur Ibrahim ◽  
Adamu Uzairu ◽  
Gideon Adamu Shallangwa ◽  
Sani Uba

Abstract Background The discovery of epidermal growth factor receptor (EGFR) inhibitors for the treatment of lung cancer, most especially non-small cell lung cancer (NSCLC), was one of the major challenges encountered by the medicinal chemist in the world. The treatment of EGFR tyrosine kinase to manage NSCLCs becomes an urgent therapeutic necessity. NSCLC was the foremost cause of cancer mortality worldwide. Therefore, there is a need to develop more EGFR inhibitors due to the development of drug resistance by the mutation. This research is aimed at designing new EGFR inhibitors using a structure-based design approach. Structure-based drug design comprises several steps such as protein structure retrieval and preparation, ligand library preparation, docking, and structural modification on the best hit compound to design new ones. Result Molecular docking virtual screening on fifty sets of quinazoline derivatives/epidermal growth factor receptor inhibitors against their target protein (EGFR tyrosine kinase receptor PDB entry: 3IKA) and pharmacokinetic profile predictions were performed to identify hit compounds with promising affinities toward their target and good pharmacokinetic profiles. The hit compounds identified were compound 6 with a binding affinity of − 9.3 kcal/mol, compounds 5 and 8, each with a binding affinity of − 9.1 kcal/mol, respectively. The three hit compounds bound to EGFR tyrosine kinase receptor via four different types of interactions which include conventional hydrogen bond, carbon-hydrogen bond, electrostatic, and hydrophobic interactions, respectively. The best hit (compound 6) among the 3 hit compounds was retained as a template and used to design sixteen new EGFR inhibitors. The sixteen newly designed compounds were also docked into the active site of EGFR tyrosine kinase receptor to study their mode of interactions with the receptor. The binding affinities of these newly designed compounds range from − 9.5 kcal/mol to − 10.2 kcal/mol. The pharmacokinetic profile predictions of these newly designed compounds were further examined and found to be orally bioavailable with good absorption, low toxicity level, and permeable properties. Conclusion The sixteen newly designed EGFR inhibitors were found to have better binding affinities than the template used in the designing process and afatinib the positive control (an FDA approved EGFR inhibitor). None of these designed compounds was found to violate more than the permissible limit set by RO5. More so, the newly designed compounds were found to have good synthetic accessibility which indicates that these newly designed compounds can be easily synthesized in the laboratory.


2021 ◽  
pp. 8-11
Author(s):  
L. S. Kruglova ◽  
I. A. Koroleva

The article is an overview and contains up-to-date information on the use of tetracycline antibiotics in the prevention of acne-like rash in patients receiving therapy with epidermal growth factor receptor inhibitors. According to studies, prevention of skin toxicity is necessary to maintain the effectiveness of the antitumor effect of EGFR inhibitors and to minimize the negative effect of adverse effects from the skin on the quality of life of patients. The use of tetracycline antibiotics in combination with topical therapy and photoprotection for the prevention of acne-like rash against the background of the use of EGFR inhibitors is a fairly safe method for long-term use. Of the antibacterial drugs for the prevention of acne-like rash, the most advisable is the appointment of doxycycline at a dose of 100 mg per day from the first day of taking EGFR inhibitors.


Sign in / Sign up

Export Citation Format

Share Document