scholarly journals Progress in Ring Opening Polymerization of Lactides Catalyzed by Chiral Organometallic Complexes

2017 ◽  
Vol 37 (5) ◽  
pp. 1139 ◽  
Author(s):  
Ning Zhao
Synlett ◽  
2017 ◽  
Vol 28 (15) ◽  
pp. 1857-1866 ◽  
Author(s):  
Linghai Xie ◽  
Rong Tong ◽  
Quanyou Feng ◽  
Yongliang Zhong

Poly(α-hydroxy acids) are important biodegradable polymers with wide applications. Recently O-carboxyanhydrides (OCAs) have emerged as promising monomer equivalents of lactides to synthesize poly(α-hydroxy acids). We will highlight recent advances in controlled ring-opening polymerization of OCAs catalyzed by organocatalysts, enzymes, or organometallic complexes.1 Introduction2 Organocatalysts for O-Carboxyanhydride Polymerization2.1 Synthesis of O-Carboxyanhydride Monomers2.2 Ring-Opening Polymerization of O-Carboxyanhydrides Catalyzed by 4-Dimethylaminopyridine2.3 Epimerization in the Ring-Opening Polymerization of O-Carboxyanhydrides Catalyzed by the Pyridine Base2.4 N-Heterocyclic Carbenes for Ring-Opening Polymerization of O-Carboxyanhydrides3 Enzymes for O-Carboxyanhydride Polymerization4 Organometallic Catalysts for O-Carboxyanhydride Polymerization4.1 Early Efforts4.2 Ring-Opening Polymerization Catalyzed by Zn Complexes4.3 Photoredox Ring-Opening Polymerization Catalyzed by Zn/Ni Complexes5 Conclusion and Perspective


2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Iuliana Cota

AbstractBiodegradable polymers represent a class of particularly useful materials for many biomedical and pharmaceutical applications. Among these types of polyesters, poly(ε-caprolactone) and polylactides are considered very promising for controlled drug delivery devices. These polymers are mainly produced by ring-opening polymerization of their respective cyclic esters, since this method allows a strict control of the molecular parameters (molecular weight and distribution) of the obtained polymers. The most widely used catalysts for ring-opening polymerization of cyclic esters are tin- and aluminium-based organometalliccomplexes; however since the contamination of the aliphatic polyesters by potentially toxic metallic residues is particularly of concern for biomedical applications, the possibility of replacing organometallic initiators by novel less toxic or more efficient organometallic complexes has been intensively studied. Thus, in the recent years, the use of highly reactive rare earth initiators/catalysts leading to lower polymer contamination has been developed. The use of rare earth complexes is considered a valuable strategy to decrease the polyester contamination by metallic residues and represents an attractive alternative to traditional organometallic complexes.


2020 ◽  
Author(s):  
Nathaniel Park ◽  
Dmitry Yu. Zubarev ◽  
James L. Hedrick ◽  
Vivien Kiyek ◽  
Christiaan Corbet ◽  
...  

The convergence of artificial intelligence and machine learning with material science holds significant promise to rapidly accelerate development timelines of new high-performance polymeric materials. Within this context, we report an inverse design strategy for polycarbonate and polyester discovery based on a recommendation system that proposes polymerization experiments that are likely to produce materials with targeted properties. Following recommendations of the system driven by the historical ring-opening polymerization results, we carried out experiments targeting specific ranges of monomer conversion and dispersity of the polymers obtained from cyclic lactones and carbonates. The results of the experiments were in close agreement with the recommendation targets with few false negatives or positives obtained for each class.<br>


2019 ◽  
Vol 52 (23) ◽  
pp. 9232-9237 ◽  
Author(s):  
Rukshika S. Hewawasam ◽  
U. L. D. Inush Kalana ◽  
Nayanthara U. Dharmaratne ◽  
Thomas J. Wright ◽  
Timothy J. Bannin ◽  
...  

2021 ◽  
Vol 03 (01) ◽  
pp. 041-050
Author(s):  
Xiaoqian Wang ◽  
Ai Lin Chin ◽  
Rong Tong

Poly(α-hydroxy acids), as a family of biodegradable polyesters, are valuable materials due to their broad applications in packaging, agriculture, and biomedical engineering. Herein we highlight and explore recent advances of catalysts in controlled ring-opening polymerization of O-carboxyanhydrides towards functionalized poly(α-hydroxy acids), especially metal catalyst-mediated controlled polymerization. Limitations of current polymerization strategies of O-carboxyanhydrides are discussed.


Sign in / Sign up

Export Citation Format

Share Document