MECHANICAL AND TRIBOTECHNICAL PROPERTIES OF MULTICOMPONENT SOLID LUBRICANT COMPOSITES BASED ON ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE

Author(s):  
Sergey V. Panin ◽  
Vladislav О. Alexenko ◽  
Lyudmila А. Kornienko ◽  
Dmitry G. Buslovich ◽  
Natalya N. Valentyukevich

Multicomponent composites with ultra-high molecular weight polyethylene (UHMWPE) matrix reinforced by short carbon fibers (CF) and filled with solid lubricant particles of finely dispersed polytetrafluoroethylene (PTFE) have been studied. It is shown that simultaneous loading of two kinds of microfillers (enforcing and solid lubricant) ensures increasing both mechanical properties (elastic modulus, yield point, shore D hardness) and wear resistance of three-component UHMWPE composites at variation of triboloading conditions. It is shown that at moderate sliding velocity (V = 0.3 m/s) and load (P = 60 N) the rational composition providing maximum wear resistance under dry sliding friction is “UHMWPE + 5 wt. % fluorolite + 5 wt. % CF” (wear resistance is doubled). The latter results from the pattern of the formed permolecular structure and friction surface material response onto tribotechnical loading (due to formation of transfer film).Under severe tribotesting conditions (P = 140 N × V = 0.5 m/s) the two-fold increase in wear resistance demonstrates the composite “UHMWPE + 5 wt. % fluorolite + 10 wt. % CF”. This effect is mostly governed by enforcing action of short carbon fibers. The mechanism of this improvement might be explained in the following way. Friction heating induced increase of the temperature gives rise to local melting and surface layer plasticization. Presence of enforcing fibers ensures better protection of the friction surface from combined action of compressive and shear forces transferred from rotating steel counterface. Friction coefficient, topography of wear track surfaces and wear mechanisms of multicomponent UHMWPE composites are discussed taking into account the data on permolecular structure formation and the temperature in the tribocontact zone.  

2016 ◽  
Vol 712 ◽  
pp. 155-160 ◽  
Author(s):  
Sergey V. Panin ◽  
Lyudmila А. Kornienko ◽  
Vladislav O. Alexenko ◽  
Larisa R. Ivanova

For estimating effectiveness of adding solid fillers for composites with ultra-high molecular weight polyethylene matrix tribotechnical characteristics of UHMWPE mixture with graphite, molybdenum disulfide and polytetrafluoroethylene were investigated under dry friction, boundary lubrication and abrasion. The optimum filler weight fraction was determined in terms of increasing wear resistance. Permolecular structure and surface topography of wear tracks for UHMWPE composites with different weight fraction of the fillers was studied. The mechanisms of wear of polymeric composites “UHMWPE-graphite”, “UHMWPE-PTFE” and “UHMWPE-MoS2” under dry sliding friction and abrasive wear are discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaocui Xin ◽  
Yunxia Wang ◽  
Zhaojie Meng ◽  
Fengyuan Yan

Purpose The purpose of this paper is to investigate the fretting wear performance of ultra-high-molecular-weight-polyethene (UHMWPE) with addition of GO and SiO2. Design/methodology/approach In this study, GO were synthesized and SiO2 nanoparticles were grafted onto GO. The effect of nanofiller on fretting wear performance of UHMWPE was investigated. Findings The results indicated that GO was successfully synthesized and SiO2 nanoparticles successfully grafted onto GO. Incorporation of GS was beneficial for the reduction in friction and the improvement in wear resistance of UHMWPE. GO was beneficial for reducing friction coefficient, while SiO2 was good for improving wear resistance. There existed a tribological synergistic effect between GO nanosheet and SiO2 nanoparticles. Research limitations/implications The hybrids of GS were promising nanofiller for improving the fretting wear performance of UHMWPE. Originality/value The main originality of the research is to reveal the effect of GO and SiO2 nanoparticles on fretting behavior of UHMWPE. The result indicated hybrids of GS were promising nanofiller for improving the fretting wear performance of UHMWPE.


2013 ◽  
Vol 752 ◽  
pp. 248-256
Author(s):  
Tamás Szívós ◽  
Gabriella Zsoldos

Ultra high molecular weight polyethylene (UHMWPE) was modified by 20 % methyl-methacrylate (MMA). Specimens were examined by two directional tribological wearing methods. Wear resistance of the modified materials was found to be increased by 38 %. Despite the promising results further experiments are needed to utilize it as human implant.


Sign in / Sign up

Export Citation Format

Share Document