Improvement of Wear Resistance of UHMWPE by Adding Solid Lubricating Fillers

2016 ◽  
Vol 712 ◽  
pp. 155-160 ◽  
Author(s):  
Sergey V. Panin ◽  
Lyudmila А. Kornienko ◽  
Vladislav O. Alexenko ◽  
Larisa R. Ivanova

For estimating effectiveness of adding solid fillers for composites with ultra-high molecular weight polyethylene matrix tribotechnical characteristics of UHMWPE mixture with graphite, molybdenum disulfide and polytetrafluoroethylene were investigated under dry friction, boundary lubrication and abrasion. The optimum filler weight fraction was determined in terms of increasing wear resistance. Permolecular structure and surface topography of wear tracks for UHMWPE composites with different weight fraction of the fillers was studied. The mechanisms of wear of polymeric composites “UHMWPE-graphite”, “UHMWPE-PTFE” and “UHMWPE-MoS2” under dry sliding friction and abrasive wear are discussed.

2021 ◽  
Vol 410 ◽  
pp. 475-481
Author(s):  
Anvar M. Kadyrmetov ◽  
Dmitri A. Popov ◽  
Yevgeny V. Snyatkov

The article presents the research results of the plasma jet multiple reflow effect over the multicomponent coating FeCoCrAlTiCuNiMo, obtained by plasma metallization in an open atmosphere, on its wear resistance under dry sliding friction. The research results indirectly confirm the influence of the coating entropy over the wear resistance increasing along of the reflow number growth.


2014 ◽  
Vol 1040 ◽  
pp. 148-154 ◽  
Author(s):  
Sergey Panin ◽  
Lyudmila А. Kornienko ◽  
Nguyen Xuan Thuc ◽  
Larisa R. Ivanova ◽  
Sergey V. Shilko

The abrasive wear of pure UHMWPE as well as one filled with nanoand microparticles (fibers) were investigated. It was found that abrasive wear resistance of microcomposites (containing AlO(OH) and Al2O3microparticles) can grow up by 16-18 times in comparison with pure UHMWPE depending on the strength and size of the filler as well as abrasive grit. Nanofillers (AlO(OH) and carbon nanofibers (CNF) as well as SiO2and Cu nanoparticles) as opposed to microfillers can improve abrasive wear resistance of UHMWPE in a significantly less degree (up to 50 %). Abrasive wear resistance of nanocomposites weakly depends on the type of filler and is defined by the polymeric matrix (permolecular) and counter-face abrasive grit. The comparative analysis of the wear mechanisms of UHMWPE based micro-and nanocomposites under abrasive wear (fixed abrasive particles) and dry sliding friction is carried out.


Author(s):  
Sergey V. Panin ◽  
Vladislav О. Alexenko ◽  
Lyudmila А. Kornienko ◽  
Dmitry G. Buslovich ◽  
Natalya N. Valentyukevich

Multicomponent composites with ultra-high molecular weight polyethylene (UHMWPE) matrix reinforced by short carbon fibers (CF) and filled with solid lubricant particles of finely dispersed polytetrafluoroethylene (PTFE) have been studied. It is shown that simultaneous loading of two kinds of microfillers (enforcing and solid lubricant) ensures increasing both mechanical properties (elastic modulus, yield point, shore D hardness) and wear resistance of three-component UHMWPE composites at variation of triboloading conditions. It is shown that at moderate sliding velocity (V = 0.3 m/s) and load (P = 60 N) the rational composition providing maximum wear resistance under dry sliding friction is “UHMWPE + 5 wt. % fluorolite + 5 wt. % CF” (wear resistance is doubled). The latter results from the pattern of the formed permolecular structure and friction surface material response onto tribotechnical loading (due to formation of transfer film).Under severe tribotesting conditions (P = 140 N × V = 0.5 m/s) the two-fold increase in wear resistance demonstrates the composite “UHMWPE + 5 wt. % fluorolite + 10 wt. % CF”. This effect is mostly governed by enforcing action of short carbon fibers. The mechanism of this improvement might be explained in the following way. Friction heating induced increase of the temperature gives rise to local melting and surface layer plasticization. Presence of enforcing fibers ensures better protection of the friction surface from combined action of compressive and shear forces transferred from rotating steel counterface. Friction coefficient, topography of wear track surfaces and wear mechanisms of multicomponent UHMWPE composites are discussed taking into account the data on permolecular structure formation and the temperature in the tribocontact zone.  


2016 ◽  
Vol 712 ◽  
pp. 161-165 ◽  
Author(s):  
Sergey V. Panin ◽  
Lyudmila А. Kornienko ◽  
Vladislav O. Alexenko ◽  
Larisa R. Ivanova ◽  
Sergey V. Shilko

In order to develop antifriction extrudable composites with micro-and nanosize fillers the mechanical and tribotechnical characteristics of ones with a hybrid polymeric “UHMWPE + polytetrafluoroethylene (PTFE)” matrix under dry sliding friction were investigated. It is shown that the wear rate of micro-and nanocomposites based on the “UHMWPE + 10 wt.% PTFE” matrix under dry sliding friction is reduced by 10-30 %. Mechanical characteristics are not changed significantly in the nanocomposites, while in the microcomposites they are reduced substantially. By means of scanning electron microscopy, differential scanning calorimetry and optical microscopy the permolecular structure, degree of crystallinity and surface topography of micro-and nanocomposites based on the hybrid matrix were investigated. The mechanisms of wear of “UHMWPE-PTFE” composites under dry sliding friction are discussed.


2018 ◽  
Vol 769 ◽  
pp. 152-157 ◽  
Author(s):  
Noppanuch Puangmalee ◽  
Narongrit Sonjaitham ◽  
Setthawit Saengthip ◽  
Noppanan Mungnuae ◽  
Surachade Solklin ◽  
...  

This research investigated the influence of silicon dioxide (SiO2) with particle size of 5 micron on microstructure, mechanical properties and wear resistance of UHMWPE polymeric composite materials under dry sliding friction that was tested by Block–on–ring technique according to ASTM G77. Bulk UHMWPE composite specimen was reinforced with SiO2 particles by weight fraction of 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4 and 5 wt.%. Specimen was performed by hot compression process with the compression forming conditions at the temperature of 202°C, pressure of 9.7 MPa and exposure time of 77 minutes. It was found that, SiO2 particle fraction in the range of not exceed than 0.5 wt.% did not affect to change microstructure of the specimen, which its microstructure did not significantly different from the initial UHMWPE specimen due to SiO2 particles were dispersed uniformly in the UHMWPE matrix. Its microstructure appeared in a spherulitic structure pattern. However, the increasing of SiO2 more than 0.5 wt.% affect to changed microstructure due to the SiO2 particles separated from the matrix and accumulated on the UHMWPE matrix. For the case of mechanical and wear resistance properties, the increasing of SiO2 particle of 0.5-1 wt.% affect to increased various mechanical properties to have a highest value and lowest wear rate as compared with initial UHMWPE up to 1.7 times. After that, the increasing of SiO2 particle affect to mechanical properties and wear resistance were decreased, except for the hardness that continuously increased according to the increasing of SiO2.


2020 ◽  
Vol 10 (13) ◽  
pp. 4511
Author(s):  
Sergey V. Panin ◽  
Qitao Huang ◽  
Vladislav O. Alexenko ◽  
Dmitry G. Buslovich ◽  
Lyudmila А. Kornienko ◽  
...  

The tribomechanical properties of the wear-resistant ultrahigh molecular weight polyethylene (UHMWPE)-based composites loaded with wollastonite microfibres silanized with various coupling agents (“KH-550”, “Penta-1006”, and “OTS”) were investigated. It was demonstrated that the mechanical properties of UHMWPE-based composites filled with various amounts of wollastonite (7–23 wt. %) increased by 1.3 times (yield strength) and by 1.8 times (elastic modulus), while the wollastonite silanization further improved yield strength by 9% in some cases. It was demonstrated that the composite loaded with 23 wt. % wollastonite silanized with the “KH-550” coupling agent possessed the maximum wear resistance under “moderate” conditions of tribological loading. Under “severe” conditions, the composites containing 23 wt. % wollastonite silanized with the less efficient “OTS” and “Penta-1006” agents showed the greatest wear resistance during dry sliding friction. Wear resistance significantly depended on filler weight fraction and the load–speed mode of the tribological tests. Based on the obtained experimental data on the mechanical (including impact toughness) and tribological properties of the UHMWPE-based composites loaded with wollastonite, the optimal compositions (the filler content and the type of the coupling agent) for two load–speed modes were designed using the developed computer algorithm. The composites provided the predefined high tribomechanical properties for operation in the metal-polymer friction units compared to neat polymer.


Author(s):  
Luis San Andrés ◽  
Wonbae Jung

Despite their many advantages, bump-type foil bearings (BFBs) have issues of dry-friction during sliding contact at rotor start/stop cycles. To prevent premature wear of both shaft and the BFB, the proper selection and application of a coating on the top foil is of importance to ensure bearing long life. This thesis presents measurements characterizing the static and dynamic load performance of a Generation I BFB having uncoated and coated (VN, TiSiN, MoS2) top foils. The bearing, with length L and diameter D = 38 mm, integrates a 360° 0.127 mm thick top foil made of Inconel X-750, and a 27 bumps strip layer, 0.47 mm in height, made of the same stock as for the top foils. The VN and TiSiN coating, 0.005 mm thick, applies to the front and back surfaces of a top foil. The MoS2 coating, 0.020 mm thick, is sacrificial. The tests were conducted at room temperature (21°C), determined by the existing test facility. The dry-sliding torque (T) increases linearly with an increase in applied static load, max W/(LD) = 25.6 kPa. The bearing with a VN coated top foil shows the largest turning torque. The dry-sliding friction factor f = T/(½WD) decreases as the specific load (W/(LD)) increases. As expected, journal rotation towards the top foil free end (clockwise) produces a larger f than for rotations in reverse. A test-rig records the BFB drag torque during rotor acceleration and deceleration procedures to/from 70 krpm (138 m/s). The vertical load applied into a bearing equals W/(LD) = −8.0 kPa, 0 kPa and 8.0 kPa. In general, the bearing with a coated top foil shows a lesser drag torque than that of the uncoated top foil bearing. Among the coated foil bearings, the one with VN coating shows the highest drag torque, whereas another with MoS2 coating shows the lowest. When the rotor starts up, the dry-sliding friction coefficient (f) of the bearing with VN coating is ∼0.4 while f for the bearing with TiSiN coating is 0.3∼0.4. The uncoated bearing shows the largest f ∼0.6, and the MoS2 coated one has the lowest f = 0.2∼0.3. The drag torque, increasing with an increase in applied static load, is small when the rotor is airborne (lesser than ∼10% of peak torque). Dynamic load tests spanning excitation frequencies (ω) from 200 Hz to 400 Hz serve to identify force coefficients for the test BFBs with a specific load of 16 kPa and operating with shaft speed at 50 krpm (833 Hz). Baseline measurements correspond to a null applied load and no shaft rotation. The test bearings show a remarkable behavior with nearly isotropic direct coefficients and very small cross-coupled ones. The bearing direct stiffnesses (K) increase with frequency whereas the direct damping coefficients (C) quickly decrease. The bearing material loss factor, γ = ωC/K, represents best the BFB ability to dissipate mechanical energy. Over the excitation frequency range, γ = 0.34, 0.28, and 0.12 for the uncoated top foil, VN coated and TiSiN coated bearings. The test data show the bearing loss factor correlates with the dry friction coefficient as γ ∼ (0.71 × f) at a rotor speed of 50 krpm (95 m/s). Since the top foils with VN or TiSiN are coated on both sides, kinetic friction between the back of a top foil and the bumps’ crests likely lessens during sustained contact.


2015 ◽  
Vol 770 ◽  
pp. 87-92
Author(s):  
Sergey Panin ◽  
Lyudmila А. Kornienko ◽  
Nguyen Xuan Thuc ◽  
Larisa R. Ivanova ◽  
Mikhail A. Poltaranin ◽  
...  

In order to find out optimum filler to increase manufacturability (extrudability) of composites based on ultra-high molecular weight polyethylene (UHMWPE) matrix as well as to develop polymer-polymeric composites with improved tribological characteristics, the structure, mechanical properties and wear resistance of UHMWPE mixtures with elasticizing block-copolymer PA-b-LLDPE (UHMWPE + PA-b-LLDPE) was investigated under dry sliding friction. Applied aspect of the study is related to the selection of commercially available fillers being compatible with UHMWPE for manufacturing anti-frictional extrudable nanocomposites. It is shown that as compared with pure UHMWPE mechanical properties (ultimate strength, value of elongation at failure) do not vary substantially, but the wear rate under dry sliding friction of polymeric composites UHMWPE + n wt.% PA-b-LLDPE is reduced only when block copolymer weight fraction is less than ≤ 5 wt.%. By the polymeric filling an important technological characteristic - specific pressure of extrusion (that is proportional to melt flow index) might be decreased. Permolecular structure and wear track surfaces of polymer-polymer composites UHMWPE + n wt.% PA-b-LLDPE was examined and numerically characterized.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 463
Author(s):  
Yuan Feng ◽  
Jiangbo Cheng ◽  
Dan Liu ◽  
Xiubing Liang

The tribological properties of the FePSiB amorphous/nanocrystalline coatings with Cr and Nb additions were investigated in reciprocating mode against tungsten carbide friction coupling with different dry sliding conditions. The wear rates of the FePSiB-based coatings increase linearly with the normal load and sliding speed. The coatings with Cr and Nb promote the formation of successive and compact oxide film on friction surface, which decreases significantly wear rate of the coating. Nano-mechanical characterization done to map the correlation between the elastic properties and wear resistance. The main damage mechanisms of the FePSiB-based coatings under dry friction conditions are abrasion wear, delamination failure and oxidation wear.


1989 ◽  
Vol 28 (6) ◽  
pp. 495-497
Author(s):  
E. K. Fen' ◽  
R. A. Alfintseva ◽  
I. G. Prikhno ◽  
A. P. Rachek

Sign in / Sign up

Export Citation Format

Share Document