scholarly journals Duration effect of desflurane anesthesia and its awakening time and arterial concentration in gynecologic patients

Clinics ◽  
2013 ◽  
Vol 68 (10) ◽  
pp. 1305-1311 ◽  
Author(s):  
TC Lin ◽  
CC Lu ◽  
CH Hsu ◽  
GJ Wu ◽  
MS Lee ◽  
...  
Diabetologia ◽  
1976 ◽  
Vol 12 (6) ◽  
pp. 589-592 ◽  
Author(s):  
G. Riccardi ◽  
D. Heaf ◽  
L. Kaijser ◽  
B. Eklund ◽  
L. A. Carlson

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fiona Li ◽  
Justin W. Hicks ◽  
Lihai Yu ◽  
Lise Desjardin ◽  
Laura Morrison ◽  
...  

Abstract Background In molecular imaging with dynamic PET, the binding and dissociation of a targeted tracer is characterized by kinetics modeling which requires the arterial concentration of the tracer to be measured accurately. Once in the body the radiolabeled parent tracer may be subjected to hydrolysis, demethylation/dealkylation and other biochemical processes, resulting in the production and accumulation of different metabolites in blood which can be labeled with the same PET radionuclide as the parent. Since these radio-metabolites cannot be distinguished by PET scanning from the parent tracer, their contribution to the arterial concentration curve has to be removed for the accurate estimation of kinetic parameters from kinetic analysis of dynamic PET. High-performance liquid chromatography has been used to separate and measure radio-metabolites in blood plasma; however, the method is labor intensive and remains a challenge to implement for each individual patient. The purpose of this study is to develop an alternate technique based on thin layer chromatography (TLC) and a sensitive commercial autoradiography system (Beaver, Ai4R, Nantes, France) to measure radio-metabolites in blood plasma of two targeted tracers—[18F]FAZA and [18F]FEPPA, for imaging hypoxia and inflammation, respectively. Results Radioactivity as low as 17 Bq in 2 µL of pig’s plasma can be detected on the TLC plate using autoradiography. Peaks corresponding to the parent tracer and radio-metabolites could be distinguished in the line profile through each sample (n = 8) in the autoradiographic image. Significant intersubject and intra-subject variability in radio-metabolites production could be observed with both tracers. For [18F]FEPPA, 50% of plasma activity was from radio-metabolites as early as 5-min post injection, while for [18F]FAZA, significant metabolites did not appear until 50-min post. Simulation study investigating the effect of radio-metabolite in the estimation of kinetic parameters indicated that 32–400% parameter error can result without radio-metabolites correction. Conclusion TLC coupled with autoradiography is a good alternative to high-performance liquid chromatography for radio-metabolite correction. The advantages of requiring only small blood samples (~ 100 μL) and of analyzing multiple samples simultaneously, make the method suitable for individual dynamic PET studies.


1964 ◽  
Vol 206 (5) ◽  
pp. 962-966 ◽  
Author(s):  
Marvin B. Bacaner ◽  
James S. Beck

A radioisotope method for measuring regional blood flow in the intestine of the dog in vivo has been favorably compared with measurement by timed collection of total venous outflow. The necessary conditions are a continuous measure of arterial concentration and cumulative regional concentration of radioisotope, an experimentally definable region, and temporary complete retention of tracer. The derivation of the relations used suggests additional applications of the method to other regions of the body.


2005 ◽  
Vol 32 (2) ◽  
pp. 76-81 ◽  
Author(s):  
Karyna C. Ventura ◽  
Grace C.H. Yang ◽  
Pascale Hummel Levine
Keyword(s):  

1989 ◽  
Vol 66 (1) ◽  
pp. 190-194 ◽  
Author(s):  
A. H. Goldfarb ◽  
J. F. Bruno ◽  
P. J. Buckenmeyer

To gain further insights into the mechanisms regulating skeletal muscle glycogenolysis during exercise, glycogen, phosphorylase, and adenosine 3',5'-cyclic monophosphate (cAMP) were determined in fast-twitch white (FTW) and fast-twitch red (FTR) muscle from groups of rats that ran for 0, 5, 10, 15, or 30 min at either 15 or 30 m/min. Glycogen degradation demonstrated an intensity and duration response in both fiber types. cAMP increased in both fiber types by 5 min and remained elevated at all times measured. FTW muscle cAMP levels were independent of both intensity and duration of exercise. FTR muscle cAMP levels were higher from 10 to 30 min at the 30-m/min intensity compared with the 15-m/min intensity. The ratio of the activity of phosphorylase in the presence of 2 mM AMP X 100 (phosphorylase a%) remained elevated at 20–22% independent of intensity and duration in FTW muscle; however, phosphorylase a% demonstrated an intensity and duration effect in FTR muscle. Glycogenolytic rates decreased with time, even though both cAMP and phosphorylase a% remained elevated in both fiber types. These data suggest that cAMP and phosphorylase a activation can be maintained during exercise in skeletal muscle but indicate a dissociation of these factors from glycogenolysis.


Sign in / Sign up

Export Citation Format

Share Document