CFD Modelling of CO₂ Hydrate Formation in the Presence of Additives

Author(s):  
Rin Yun ◽  
Benedict Prah ◽  
Kwangbin Lee
2018 ◽  
Author(s):  
Kasturi Sukhapure ◽  
Alan Burns ◽  
Tariq Mahmud ◽  
Jake Spooner

2018 ◽  
Author(s):  
Kyle Hall ◽  
Zhengcai Zhang ◽  
Christian Burnham ◽  
Guang-Jun Guo ◽  
Sheelagh Carpendale ◽  
...  

<p>The broad scientific and technological importance of crystallization has led to significant research probing and rationalizing crystallization processes, particularly how nascent</p> <p>crystal phases appear. Previous work has generally neglected the possibility of the molecular-level dynamics of individual nuclei coupling to local structures (e.g., that of the nucleus and its</p> <p>surrounding environment). However, recent experimental work has conjectured that this can occur. Therefore, to address a deficiency in scientific understanding of crystallization, we have</p> <p>probed the nucleation of prototypical single and multi-component crystals (specifically, ice and mixed gas hydrates). Here, we establish that local structures can bias the evolution of nascent</p> <p>crystal phases on a nanosecond timescale by, for example, promoting the appearance or disappearance of specific crystal motifs, and thus reveal a new facet of crystallization behaviour.</p> <p>Analysis of the crystallization literature confirms that structural biases are likely present during crystallization processes beyond ice and gas hydrate formation. Moreover, we demonstrate that</p> <p>structurally-biased dynamics are a lens for understanding existing computational and experimental results while pointing to future opportunities.</p>


2018 ◽  
Author(s):  
Kyle Hall ◽  
Zhengcai Zhang ◽  
Christian Burnham ◽  
Guang-Jun Guo ◽  
Sheelagh Carpendale ◽  
...  

<p>The broad scientific and technological importance of crystallization has led to significant research probing and rationalizing crystallization processes, particularly how nascent</p> <p>crystal phases appear. Previous work has generally neglected the possibility of the molecular-level dynamics of individual nuclei coupling to local structures (e.g., that of the nucleus and its</p> <p>surrounding environment). However, recent experimental work has conjectured that this can occur. Therefore, to address a deficiency in scientific understanding of crystallization, we have</p> <p>probed the nucleation of prototypical single and multi-component crystals (specifically, ice and mixed gas hydrates). Here, we establish that local structures can bias the evolution of nascent</p> <p>crystal phases on a nanosecond timescale by, for example, promoting the appearance or disappearance of specific crystal motifs, and thus reveal a new facet of crystallization behaviour.</p> <p>Analysis of the crystallization literature confirms that structural biases are likely present during crystallization processes beyond ice and gas hydrate formation. Moreover, we demonstrate that</p> <p>structurally-biased dynamics are a lens for understanding existing computational and experimental results while pointing to future opportunities.</p>


2010 ◽  
Vol 7 ◽  
pp. 90-97
Author(s):  
M.N. Galimzianov ◽  
I.A. Chiglintsev ◽  
U.O. Agisheva ◽  
V.A. Buzina

Formation of gas hydrates under shock wave impact on bubble media (two-dimensional case) The dynamics of plane one-dimensional shock waves applied to the available experimental data for the water–freon media is studied on the base of the theoretical model of the bubble liquid improved with taking into account possible hydrate formation. The scheme of accounting of the bubble crushing in a shock wave that is one of the main factors in the hydrate formation intensification with increasing shock wave amplitude is proposed.


2019 ◽  
Vol 14 (2) ◽  
pp. 142-147
Author(s):  
S.R. Kildibaeva ◽  
E.T. Dalinskij ◽  
G.R. Kildibaeva

The paper deals with the case of damage to the underwater pipeline through which oil and associated gas are transported. The process of oil and gas migration is described by the flow of a multiphase submerged jet. At the initial moment, the temperature of the incoming hydrocarbons, their initial velocity, the temperature of the surrounding water, the depth of the pipeline is known. The paper considers two cases of different initial parameters of hydrocarbon outflow from the pipeline. In the first case, the thermobaric environmental conditions correspond to the conditions of hydrate formation and stable existence. Such a case corresponds to the conditions of the hydrocarbons flow in the Gulf of Mexico. In the second case, hydrate is not formed. Such flows correspond to the cases of oil transportation through pipelines in the Baltic sea (for example, Nord stream–2). The process of hydrate formation will be characterized by the following dynamics of the bubble: first, it will be completely gas, then a hydrate shell (composite bubble) will begin to form on its surface, then the bubble will become completely hydrate, which will be the final stage. The integral Lagrangian control volume method will be considered for modeling the dynamics of hydrocarbon jet propagation. According to this method, the jet is considered as a sequence of elementary volumes. When modeling the jet flow, the laws of conservation of mass, momentum and energy for the components included in the control volume are taken into account. The equations are used taking into account the possible formation of hydrate. Thermophysical characteristics of hydrocarbons coming from the damaged pipeline for cases of deep-water and shallow-water pipeline laying are obtained. The trajectories of hydrocarbon migration, the dependence of the jet temperature and density on the vertical coordinate are analyzed.


Sign in / Sign up

Export Citation Format

Share Document