PARTICLE-LADEN FLOW AROUND TWO CIRCULAR CYLINDERS IN TANDEM ARRANGEMENTS

2021 ◽  
Vol 26 (3) ◽  
pp. 108-116
Author(s):  
D.A.H. Khalifa ◽  
S. Jeong ◽  
D. Kim
2011 ◽  
Vol 42 (7) ◽  
pp. 595-612
Author(s):  
Masome Heidary ◽  
Mousa Farhadi ◽  
Kurosh Sedighi ◽  
Mostafa Nourollahi

Author(s):  
Carmen Popa ◽  
Violeta Anghelina ◽  
Octavian Munteanu

Abstract The descriptive geometry constitues the foundation of the engineering sciences, so necessary to the specialists of this field. The aim of this paper is to establish the intersection curve between two cylinders and their unfoldings, by using the programmes:AutoCAD and Mathematica. We used the classical method and we first establish the intersection curve and then the cylinders unfoldings. To do this, we used the AutoCAD program. The same unfoldings can be obtained by introducing directly the curve equations (which are inferred) in Mathematica program.


1990 ◽  
Vol 10 (1Supplement) ◽  
pp. 35-40 ◽  
Author(s):  
Kazuo OHMI ◽  
Kensaku IMAICHI ◽  
Ei-ichi TADA

1975 ◽  
Vol 67 (4) ◽  
pp. 787-815 ◽  
Author(s):  
Allen T. Chwang ◽  
T. Yao-Tsu Wu

The present study further explores the fundamental singular solutions for Stokes flow that can be useful for constructing solutions over a wide range of free-stream profiles and body shapes. The primary singularity is the Stokeslet, which is associated with a singular point force embedded in a Stokes flow. From its derivatives other fundamental singularities can be obtained, including rotlets, stresslets, potential doublets and higher-order poles derived from them. For treating interior Stokes-flow problems new fundamental solutions are introduced; they include the Stokeson and its derivatives, called the roton and stresson.These fundamental singularities are employed here to construct exact solutions to a number of exterior and interior Stokes-flow problems for several specific body shapes translating and rotating in a viscous fluid which may itself be providing a primary flow. The different primary flows considered here include the uniform stream, shear flows, parabolic profiles and extensional flows (hyper-bolic profiles), while the body shapes cover prolate spheroids, spheres and circular cylinders. The salient features of these exact solutions (all obtained in closed form) regarding the types of singularities required for the construction of a solution in each specific case, their distribution densities and the range of validity of the solution, which may depend on the characteristic Reynolds numbers and governing geometrical parameters, are discussed.


2021 ◽  
Vol 62 (3) ◽  
Author(s):  
Nils Paul van Hinsberg

Abstract The aerodynamics of smooth and slightly rough prisms with square cross-sections and sharp edges is investigated through wind tunnel experiments. Mean and fluctuating forces, the mean pitch moment, Strouhal numbers, the mean surface pressures and the mean wake profiles in the mid-span cross-section of the prism are recorded simultaneously for Reynolds numbers between 1$$\times$$ × 10$$^{5}$$ 5 $$\le$$ ≤ Re$$_{D}$$ D $$\le$$ ≤ 1$$\times$$ × 10$$^{7}$$ 7 . For the smooth prism with $$k_s$$ k s /D = 4$$\times$$ × 10$$^{-5}$$ - 5 , tests were performed at three angles of incidence, i.e. $$\alpha$$ α = 0$$^{\circ }$$ ∘ , −22.5$$^{\circ }$$ ∘ and −45$$^{\circ }$$ ∘ , whereas only both “symmetric” angles were studied for its slightly rough counterpart with $$k_s$$ k s /D = 1$$\times$$ × 10$$^{-3}$$ - 3 . First-time experimental proof is given that, within the accuracy of the data, no significant variation with Reynolds number occurs for all mean and fluctuating aerodynamic coefficients of smooth square prisms up to Reynolds numbers as high as $$\mathcal {O}$$ O (10$$^{7}$$ 7 ). This Reynolds-number independent behaviour applies to the Strouhal number and the wake profile as well. In contrast to what is known from square prisms with rounded edges and circular cylinders, an increase in surface roughness height by a factor 25 on the current sharp-edged square prism does not lead to any notable effects on the surface boundary layer and thus on the prism’s aerodynamics. For both prisms, distinct changes in the aerostatics between the various angles of incidence are seen to take place though. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document