scholarly journals On The Estimation Of The Shape Parameter Of A Symmetric Distribution

2021 ◽  
pp. 78-100
Author(s):  
Jennifer S.K. Chan ◽  
S.T. Boris Choy ◽  
Stephen G. Walker
2018 ◽  
Author(s):  
Jennifer Chan ◽  
S. T. Boris Choy ◽  
Stephen Walker

2017 ◽  
Vol 10 (6) ◽  
pp. 461
Author(s):  
Mohammed-El-Amine Khodja ◽  
Ahmed Hamida Boudinar ◽  
Azeddine Bendiabdellah

Author(s):  
Nobuyuki Wakai ◽  
Yuji Kobira ◽  
Takashi Setoya ◽  
Tamotsu Oishi ◽  
Shinichi Yamasaki

Abstract An effective procedure to determine the Burn-In acceleration factors for 130nm and 90 nm processes are discussed in this paper. The relationship among yield, defect density, and reliability, is well known and well documented for defect mechanisms. In particular, it is important to determine the suitable acceleration factors for temperature and voltage to estimate the exact Burn- In conditions needed to screen these defects. The approach in this paper is found to be useful for recent Cu-processes which are difficult to control from a defectivity standpoint. Performing an evaluation with test vehicles of 130nm and 90nm technology, the following acceleration factors were obtained, Ea>0.9ev and β (Beta)>-5.85. In addition, it was determined that a lower defect density gave a lower Weibull shape parameter. As a result of failure analysis, it is found that the main failures in these technologies were caused by particles, and their Weibull shape parameter “m” was changed depending of the related defect density. These factors can be applied for an immature time period where the process and products have failure mechanisms dominated by defects. Thus, an effective Burn-In is possible with classification from the standpoint of defect density, even from a period of technology immaturity.


2021 ◽  
Vol 47 (4) ◽  
Author(s):  
Daniel Potts ◽  
Manfred Tasche

AbstractIn this paper, we study the error behavior of the nonequispaced fast Fourier transform (NFFT). This approximate algorithm is mainly based on the convenient choice of a compactly supported window function. Here, we consider the continuous Kaiser–Bessel, continuous exp-type, sinh-type, and continuous cosh-type window functions with the same support and same shape parameter. We present novel explicit error estimates for NFFT with such a window function and derive rules for the optimal choice of the parameters involved in NFFT. The error constant of a window function depends mainly on the oversampling factor and the truncation parameter. For the considered continuous window functions, the error constants have an exponential decay with respect to the truncation parameter.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 284
Author(s):  
Ebru Bilici

With the advancement of technology in forestry, the utilization of advanced machines in forest operations has been increasing in the last decades. Due to their high operating costs, it is crucial to select the right machinery, which is mostly done by using productivity analysis. In this study, a productivity estimation model was developed in order to determine the timber volume cut per unit time for a feller-buncher. The Weibull distribution method was used to develop the productivity model. In the study, the model of the theoretical (estimated) volume distributions obtained with the Weibull probability density function was generated. It was found that the c value was 1.96 and the b value was 0.58 (i.e., b is the scale parameter, and c is the shape parameter). The model indicated that the frequency of the volume data had moved away from 0 as the shape parameter of the Weibull distribution increased. Thus, it was revealed that the shape parameter gives preliminary information about the distribution of the volume frequency. The consistency of the measured timber volume with the estimated timber volume strongly indicated that this approach can be effectively used by decision makers as a key tool to predict the productivity of a feller-buncher used in harvesting operations.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1943
Author(s):  
Rosario Balbastre-Soldevila ◽  
Rafael García-Bartual ◽  
Ignacio Andrés-Doménech

The two-parameter gamma function (G2P) design storm is a recent methodology used to obtain synthetic hyetographs especially developed for urban hydrology applications. Further analytical developments on the G2P design storm are presented herein, linking the rainfall convectivity n-index with the shape parameter of the design storm. This step can provide a useful basis for future easy-to-handle rainfall inputs in the context of regional urban drainage studies. A practical application is presented herein for the case of Valencia (Spain), based on high-resolution time series of rainfall intensity. The resulting design storm captures certain internal statistics and features observed in the fine-scale rainfall intensity historical records. On the other hand, a direct, simple method is formulated to derivate the design storm from the intensity–duration–frequency (IDF) curves, making use of the analytical relationship with the n-index.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 830
Author(s):  
Evgeniya V. Goloveshkina ◽  
Leonid M. Zubov

The concept of a spherically symmetric second-rank tensor field is formulated. A general representation of such a tensor field is derived. Results related to tensor analysis of spherically symmetric fields and their geometric properties are presented. Using these results, a formulation of the spherically symmetric problem of the nonlinear theory of dislocations is given. For an isotropic nonlinear elastic material with an arbitrary spherically symmetric distribution of dislocations, this problem is reduced to a nonlinear boundary value problem for a system of ordinary differential equations. In the case of an incompressible isotropic material and a spherically symmetric distribution of screw dislocations in the radial direction, an exact analytical solution is found for the equilibrium of a hollow sphere loaded from the outside and from the inside by hydrostatic pressures. This solution is suitable for any models of an isotropic incompressible body, i. e., universal in the specified class of materials. Based on the obtained solution, numerical calculations on the effect of dislocations on the stress state of an elastic hollow sphere at large deformations are carried out.


Sign in / Sign up

Export Citation Format

Share Document