scholarly journals Estimating the Critical Water Content and Water Stress Coefficient of Soybean (Glycine max [L.] Merr.) in Andisol of Lampung Indonesia

2005 ◽  
Vol 11 (1) ◽  
pp. 31-35
Author(s):  
R.A. Bustomi Rosadi ◽  
Afandi ◽  
Masateru Senge ◽  
Kengo Ito ◽  
John Tawiah Adomako
Author(s):  
Élvis da S. Alves ◽  
Roberto Filgueiras ◽  
Lineu N. Rodrigues ◽  
Fernando F. da Cunha ◽  
Catariny C. Aleman

ABSTRACT In regions where the irrigated area is increasing and water availability is reduced, such as the West of the Bahia state, Brazil, the use of techniques that contribute to improving water use efficiency is paramount. One of the ways to improve irrigation is by improving the calculation of actual evapotranspiration (ETa), which among other factors is influenced by soil drying, so it is important to understand this relationship, which is usually accounted for in irrigation management models through the water stress coefficient (Ks). This study aimed to estimate the water stress coefficient (Ks) through information obtained via remote sensing, combined with field data. For this, a study was carried out in the municipality of São Desidério, an area located in western Bahia, using images of the Landsat-8 satellite. Ks was calculated by the relationship between crop evapotranspiration and ETa, calculated by the Simple Algorithm for Evapotranspiration Retrieving (SAFER). The Ks estimated by remote sensing showed, for the development and medium stages, average errors on the order of 5.50%. In the final stage of maize development, the errors obtained were of 23.2%.


1970 ◽  
Vol 4 (1) ◽  
Author(s):  
EDI PURWANTO

These sets of experiments were conducted at Faculty of Agriculture Sebelas Maret University and the Central Experiment Station of Agricultural Faculty, Sebelas Maret University at Jumantono, Karanganyar, Central Java. The experiments were conducted under greenhouse, laboratory and field condition for each year, while the duration of this research was for two years. The specific objectives of the experiments were: (i) to determine the changes of some morpho-physiological characteristics of water stress soybean and those of unstressed plants at different growth stages; (ii) to evaluate relationship between morpho-physiological traits associated with water stress resistance and yield of soybean. In this study consists some experiments, there are: (i) about response of some soybean cultivars to water stress in screen house and field condition; (ii) about germination response of some soybean cultivars in different concentration 0f PEG; (iii) a bout recovery survival and recovery of soybean seedlings after heat treatment. The plants were well watered before thetreatment. Based on the result of the experiments, the following conclusion could be made: (i) water stress reduced growth, yield and yield components 0 f a II soybean c ultivars used; (li) PEG induced water stress resulted in lower germination, shorter root and shoot length, and increase root-shoot ratio; (iii) the ability of plants to recovery after heat stress have low correlation with drought resistance in this experiment; (iv) the determination of root-shoot ratio in the seedling stage was shown to be suitable screening techniques used to study water stress resistance.© 200'3Jurusan Biologi FMIPA UNS SurakartaKey words: soybean (Glycine max L.), cultivars, water stress.


Author(s):  
Meysam Abedinpour

A field experiment was conducted for determination of crop coefficient (KC) and water stress coefficient (Ks) for wheat crop under different salinity levels, during 2015-16. Complete randomized block design of five treatments were considered, i.e., 0.51 dS/m (fresh water) as a control treatment and other four saline water treatments (4, 6, 8 and 10 dS/m), for S1, S2, S3 and S4 with three replications. The results revealed that the water consumed by plants during the different crop growth stages follows the order of FW>S1>S2>S3>S4 salinity levels. According to the obtained results, the calculated values of crop coefficients significantly differed from those suggested by FAO No.56 for the crops. The Ks values clearly differ from one stage to another because the salt stress causes both osmotic stress, due to a decrease in the soil water potential, and ionic stress which the average values of water stress coefficient (Ks) follows this order; FW(1.0)=S1(1.0)>S2(1.0)>S3(0.93)>S4(0.82). Overall, it was found the differences are attributed primarily to specific cultivar, the changes in local climatic conditions and seasonal differences in crop growth patterns. Thus, further studies are essential to determine the crop coefficient values under different variables, to make the best management practice (BMP) in agriculture.


Sign in / Sign up

Export Citation Format

Share Document