scholarly journals Length of Maximal Common Subsequences

1992 ◽  
Vol 21 (426) ◽  
Author(s):  
Kim Skak Larsen

<p>The problem of computing the length of the maximal common subsequences of two strings is quite well examined in the sequential case. There are many variations, but the standard approach is to compute the length in quadratic time using dynamic programming. A linear-time parallel algorithm can be obtained via a simple modification of this strategy by letting a linear number of processors sweep through the table created for the dynamic programming approach.</p><p>However, the contribution of this paper is to show that the problem is in NC. More specifically, we show that the length of the maximal common subsequences of two strings <em>s</em> and <em>t</em> can be computed in time O(log |s| € log |t|) in the CREW PRAM model and in time Theta(min(log |s|, log |t|)) in the COMMON CRCW PRAM model.</p>

2002 ◽  
Vol 12 (01) ◽  
pp. 51-64 ◽  
Author(s):  
B. S. PANDA ◽  
VIJAY NATARAJAN ◽  
SAJAL K. DAS

In this paper we propose a parallel algorithm to construct a one-sided monotone polygon from a Hamiltonian 2-separator chordal graph. The algorithm requires O( log n) time and O(n) processors on the CREW PRAM model, where n is the number of vertices and m is the number of edges in the graph. We also propose parallel algorithms to recognize Hamiltonian 2-separator chordal graphs and to construct a Hamiltonian cycle in such a graph. They run in O( log 2 n) time using O(mn) processors on the CRCW PRAM model and O( log 2 n) time using O(m) processors on the CREW PRAM model, respectively.


Sign in / Sign up

Export Citation Format

Share Document