scholarly journals Another way to say subsolution: the maximum principle and sums of Green functions

2005 ◽  
Vol 97 (1) ◽  
pp. 127 ◽  
Author(s):  
R.S. Laugesen ◽  
N. A. Watson

Consider an elliptic second order differential operator $L$ with no zeroth order term (for example the Laplacian $L=-\Delta$). If $Lu \leq 0$ in a domain $U$, then of course $u$ satisfies the maximum principle on every subdomain $V \subset U$. We prove a converse, namely that $Lu \leq 0$ on $U$ if on every subdomain $V$, the maximum principle is satisfied by $u+v$ whenever $v$ is a finite linear combination (with positive coefficients) of Green functions with poles outside $\overline{V}$. This extends a result of Crandall and Zhang for the Laplacian. We also treat the heat equation, improving Crandall and Wang's recent result. The general parabolic case remains open.

2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Kyusik Hong

We generalize A. Borbély’s condition for the conclusion of the Omori-Yau maximum principle for the Laplace operator on a complete Riemannian manifold to a second-order linear semielliptic operatorLwith bounded coefficients and no zeroth order term. Also, we consider a new sufficient condition for the existence of a tamed exhaustion function. From these results, we may remark that the existence of a tamed exhaustion function is more general than the hypotheses in the version of the Omori-Yau maximum principle that was given by A. Ratto, M. Rigoli, and A. G. Setti.


2020 ◽  
Vol 10 (1) ◽  
pp. 895-921
Author(s):  
Daniele Cassani ◽  
Luca Vilasi ◽  
Youjun Wang

Abstract In this paper we study a class of one-parameter family of elliptic equations which combines local and nonlocal operators, namely the Laplacian and the fractional Laplacian. We analyze spectral properties, establish the validity of the maximum principle, prove existence, nonexistence, symmetry and regularity results for weak solutions. The asymptotic behavior of weak solutions as the coupling parameter vanishes (which turns the problem into a purely nonlocal one) or goes to infinity (reducing the problem to the classical semilinear Laplace equation) is also investigated.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 405
Author(s):  
Alexander Yeliseev ◽  
Tatiana Ratnikova ◽  
Daria Shaposhnikova

The aim of this study is to develop a regularization method for boundary value problems for a parabolic equation. A singularly perturbed boundary value problem on the semiaxis is considered in the case of a “simple” rational turning point. To prove the asymptotic convergence of the series, the maximum principle is used.


1986 ◽  
Vol 108 (4) ◽  
pp. 330-339 ◽  
Author(s):  
M. A. Townsend ◽  
D. B. Cherchas ◽  
A. Abdelmessih

This study considers the optimal control of dry bulb temperature and moisture content in a single zone, to be accomplished in such a way as to be implementable in any zone of a multi-zone system. Optimality is determined in terms of appropriate cost and performance functions and subject to practical limits using the maximum principle. Several candidate optimal control strategies are investigated. It is shown that a bang-bang switching control which is theoretically periodic is a least cost practical control. In addition, specific attributes of this class of problem are explored.


2008 ◽  
Vol 18 (04) ◽  
pp. 511-541 ◽  
Author(s):  
WENLIANG GAO ◽  
CHANGJIANG ZHU

In this paper, we consider the asymptotic decay rate towards the planar rarefaction waves to the Cauchy problem for a hyperbolic–elliptic coupled system called as a model system of the radiating gas in two dimensions. The analysis based on the standard L2-energy method, L1-estimate and the monotonicity of profile obtained by the maximum principle.


Sign in / Sign up

Export Citation Format

Share Document