scholarly journals Microgravity Inhibits Resting T Cell Immunity in an Exposure Time-Dependent Manner

2014 ◽  
Vol 11 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Haiying Luo ◽  
Chongzhen Wang ◽  
Meifu Feng ◽  
Yong Zhao
2021 ◽  
Vol 6 (59) ◽  
pp. eabh2383
Author(s):  
Xi Wang ◽  
Bo Li ◽  
Yu Jeong Kim ◽  
Yu-Chen Wang ◽  
Zhe Li ◽  
...  

Monoamine oxidase A (MAO-A) is an enzyme best known for its function in the brain, where it breaks down neurotransmitters and thereby influences mood and behavior. Small-molecule MAO inhibitors (MAOIs) have been developed and are clinically used for treating depression and other neurological disorders. However, the involvement of MAO-A in antitumor immunity has not been reported. Here, we observed induction of the Maoa gene in tumor-infiltrating immune cells. Maoa knockout mice exhibited enhanced antitumor T cell immunity and suppressed tumor growth. MAOI treatment significantly suppressed tumor growth in preclinical mouse syngeneic and human xenograft tumor models in a T cell–dependent manner. Combining MAOI and anti–PD-1 treatments generated synergistic tumor suppression effects. Clinical data correlation studies associated intratumoral MAOA expression with T cell dysfunction and decreased patient survival in a broad range of cancers. We further demonstrated that MAO-A restrains antitumor T cell immunity through controlling intratumoral T cell autocrine serotonin signaling. Together, these data identify MAO-A as an immune checkpoint and support repurposing MAOI antidepressants for cancer immunotherapy.


2021 ◽  
Author(s):  
David J. Hamelin ◽  
Dominique Fournelle ◽  
Jean-Christophe Grenier ◽  
Jana Schockaert ◽  
Kevin Kovalchik ◽  
...  

The rapid, global dispersion of SARS-CoV-2 since its initial identification in December 2019 has led to the emergence of a diverse range of variants. The initial concerns regarding the virus were quickly compounded with concerns relating to the impact of its mutated forms on viral infectivity, pathogenicity and immunogenicity. To address the latter, we seek to understand how the mutational landscape of SARS-CoV-2 has shaped HLA-restricted T cell immunity at the population level during the first year of the pandemic, before mass vaccination. We analyzed a total of 330,246 high quality SARS-CoV-2 genome assemblies sampled across 143 countries and all major continents. Strikingly, we found that specific mutational patterns in SARS-CoV-2 diversify T cell epitopes in an HLA supertype-dependent manner. In fact, we observed that proline residues are preferentially removed from the proteome of prevalent mutants, leading to a predicted global loss of SARS-CoV-2 T cell epitopes in individuals expressing HLA-B alleles of the B7 supertype family. In addition, we show that this predicted global loss of epitopes is largely driven by a dominant C-to-U mutation type at the RNA level. These results indicate that B7 supertype-associated epitopes, including the most immunodominant ones, were more likely to escape CD8+ T cell immunosurveillance during the first year of the pandemic. Together, our study lays the foundation to help understand how SARS-CoV-2 mutants shape the repertoire of T cell targets and T cell immunity across human populations. The proposed theoretical framework has implications in viral evolution, disease severity, vaccine resistance and herd immunity.


2008 ◽  
Vol 28 (4) ◽  
pp. 325-339 ◽  
Author(s):  
Hang-Rae Kim ◽  
Kyung-A Hwang ◽  
Sung-Hwan Park ◽  
Insoo Kang

Sign in / Sign up

Export Citation Format

Share Document