scholarly journals Electrical Energy Losses Determination In Low Voltage – A Case Study

2011 ◽  
Vol 6 (2) ◽  
pp. 91-116
Author(s):  
Gaspar Vieira ◽  
Rui Barbosa ◽  
Leonilde Varela ◽  
Goran Putnik
Author(s):  
A. V. Lykin ◽  
E. A. Utkin

The article considers the feasibility of changing the structure of a distribution electrical network by transferring points of electricity transformation as close to consumers as possible. This approach is based on installation of pole-mounted transformer substations (PMTS) near consumer groups and changes the topology of the electrical network. At the same time, for groups of consumers, the configuration of sections of the low-voltage network, including service drops, changes. The efficiency of approaching transformer substations to consumers was estimated by the reduction in electrical energy losses due to the expansion of the high-voltage network. The calculation of electrical losses was carried out according to twenty-four hour consumer demand curve. To estimate the power losses in each section of the electrical network of high and low voltage, the calculated expressions were obtained. For the considered example, the electrical energy losses in the whole network with a modified topology is reduced by about two times, while in a high-voltage network with the same transmitted power, the losses are reduced to a practically insignificant level, and in installed PMTS transformers they increase mainly due to the rise in total idle losses. The payback period of additional capital investments in option with modified topology will be significantly greater if payback is assessed only by saving losses cost. Consequently, the determination of the feasibility of applying this approach should be carried out taking into account such factors as increasing the reliability of electricity supply, improving the quality of electricity, and increasing the power transmission capacity of the main part of electrical network.


2018 ◽  
Vol 18 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Emil Cazacu ◽  
Lucian Petrescu ◽  
Maria-Cătălina Petrescu

Abstract In modern low-voltage electrical installations, the predictive maintenance of the major electrical equipments involved in the power delivery process (transformers) or in the conversion of the electrical energy (especially electric motors) becomes mandatory. Thus, a high level of reliability and safety is assured for both the electric facility and operators. The proactive maintenance is to be non-invasively performed and mainly requires an infrared (IR) thermographic inspection and power quality analysis of the installation loads. A vibration investigation is also necessary for the motor drive systems. The paper critically studies the first two main maintenance procedures revealing their main characteristics, performances and limits. A case-study presents a 1000 kVA distribution transformer that supplies a bakery facility that comprised mainly heaters and inductions motors as loads.


2011 ◽  
Vol 7 (2) ◽  
pp. 144-150
Author(s):  
Sameer Mustafa ◽  
Mohammed Yasen ◽  
Hussein Abdullah

Correct calculations of losses are important for several reasons. There are two basic methods that can be used to calculate technical energy losses, a method based on subtraction of metered energy purchased and metered energy sold to customers and a method based on modeling losses in individual components of the system. For considering the technical loss in distribution system included: transmission line losses, power transformer losses, distribution line losses and low-voltage transformer losses. This work presents an evaluation of the power losses in Kirkuk electric distribution system area and submit proposals and appropriate solutions and suggestions to reduce the losses. A program under Visual Basic was designed to calculate and evaluate electrical energy losses in electrical power systems.


Author(s):  
Benbouza Naima ◽  
Benfarhi Louiza ◽  
Azoui Boubekeur

Background: The improvement of the voltage in power lines and the respect of the low voltage distribution transformer substations constraints (Transformer utilization rate and Voltage drop) are possible by several means: reinforcement of conductor sections, installation of new MV / LV substations (Medium Voltage (MV), Low Voltage (LV)), etc. Methods: Connection of mini-photovoltaic systems (PV) to the network, or to consumers in underserved areas, is a well-adopted solution to solve the problem of voltage drop and lighten the substation transformer, and at the same time provide clean electrical energy. PV systems can therefore contribute to this solution since they produce energy at the deficit site. Results: This paper presents the improvement of transformer substation constraints, supplying an end of low voltage electrical line, by inserting photovoltaic systems at underserved subscribers. Conclusion: This study is applied to a typical load pattern, specified to the consumers region.


Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


2021 ◽  
Vol 11 (9) ◽  
pp. 4298
Author(s):  
Alissa Kain ◽  
Douglas L. Van Bossuyt ◽  
Anthony Pollman

Military bases perform important national security missions. In order to perform these missions, specific electrical energy loads must have continuous, uninterrupted power even during terrorist attacks, adversary action, natural disasters, and other threats of specific interest to the military. While many global military bases have established microgrids that can maintain base operations and power critical loads during grid disconnect events where outside power is unavailable, many potential threats can cause microgrids to fail and shed critical loads. Nanogrids are of specific interest because they have the potential to protect individual critical loads in the event of microgrid failure. We present a systems engineering methodology that analyzes potential nanogrid configurations to understand which configurations may improve energy resilience and by how much for critical loads from a national security perspective. This then allows targeted deployment of nanogrids within existing microgrid infrastructures. A case study of a small military base with an existing microgrid is presented to demonstrate the potential of the methodology to help base energy managers understand which options are preferable and justify implementing nanogrids to improve energy resilience.


2020 ◽  
pp. 1-13
Author(s):  
Fatima Mašić ◽  
Ajla Merzić ◽  
Adnan Bosović ◽  
Mustafa Musić

Sign in / Sign up

Export Citation Format

Share Document