scholarly journals Geochemical variation of magmatic Fe-Ti-P mineralization associated with Proterozoic massif-type anorthosites from the Grenville Province, Quebec: tracking magma differentiation using oxide, apatite and plagioclase chemistry of the Vanel Anorthosite Suite

2021 ◽  
Author(s):  
Pedro Miloski ◽  
Sarah Dare ◽  
Caroline Morisset
2005 ◽  
Vol 42 (10) ◽  
pp. 1865-1880 ◽  
Author(s):  
Claude Hébert ◽  
Anne-Marie Cadieux ◽  
Otto van Breemen

In the south-central Grenville Province, Quebec, Canada, anorthosite–mangerite–charnockite–granite (AMCG) magmatism took place during four distinct episodes between 1327 and 1008 Ma. AMCG rocks crosscut several gneiss complexes composed of ~1506 Ma supracrustal rocks and massive to gneissic igneous rocks that were emplaced during two distinct episodes: ~1434 and 1393–1383 Ma. The four episodes of AMCG magmatism are (i) the 1327 ± 16 Ma labradorite-type De La Blache Mafic Plutonic Suite, (ii) the 1160–1135 Ma labradorite- and andesine-type Lac St. Jean Anorthositic Suite, (iii) a 1082–1045 Ma unnamed plutonic suite, and (iv) the 1020–1008 Ma andesine-type Valin Anorthositic Suite. The Valin Anorthositic Suite includes the 1016 ± 2 Ma andesine-type Mattawa Anorthosite, the 1010–1008 Ma andesine-type Labrieville Alkalic Anorthositic Massif, the 1020 ± 4 Ma St. Ambroise Pluton, the 1018+7–3 Ma Farmer Monzonite; the 1010 ± 2 Ma Gouin Charnockite, and the 1010 ± 3 Ma La Hache Monzonite. Study of the Ti–Te–P mineral occurrences in these four AMCG units in the south-central Grenville Province has shown that (i) apatite-bearing rocks are related only to andesine-type anorthosites, (ii) titaniferous magnetite is restricted to labradorite-type anorthosites, and (iii) hemo-ilmenite occurs only in andesine-type anorthosite and associated oxide–apatite-rich gabbronorites (OAGN) and nelsonites.


2021 ◽  
Vol 13 (10) ◽  
pp. 5612
Author(s):  
Shu-Yuan Pan ◽  
Cheng-Di Dong ◽  
Jenn-Feng Su ◽  
Po-Yen Wang ◽  
Chiu-Wen Chen ◽  
...  

Biochar is a carbon-rich material prepared from the pyrolysis of biomass under various conditions. Recently, biochar drew great attention due to its promising potential in climate change mitigation, soil amendment, and environmental control. Obviously, biochar can be a beneficial soil amendment in several ways including preventing nutrients loss due to leaching, increasing N and P mineralization, and enabling the microbial mediation of N2O and CO2 emissions. However, there are also conflicting reports on biochar effects, such as water logging and weathering induced change of surface properties that ultimately affects microbial growth and soil fertility. Despite the voluminous reports on soil and biochar properties, few studies have systematically addressed the effects of biochar on the sequestration of carbon, nitrogen, and phosphorus in soils. Information on microbially-mediated transformation of carbon (C), nitrogen (N), and phosphorus (P) species in the soil environment remains relatively uncertain. A systematic documentation of how biochar influences the fate and transport of carbon, phosphorus, and nitrogen in soil is crucial to promoting biochar applications toward environmental sustainability. This report first provides an overview on the adsorption of carbon, phosphorus, and nitrogen species on biochar, particularly in soil systems. Then, the biochar-mediated transformation of organic species, and the transport of carbon, nitrogen, and phosphorus in soil systems are discussed. This review also reports on the weathering process of biochar and implications in the soil environment. Lastly, the current knowledge gaps and priority research directions for the biochar-amended systems in the future are assessed. This review focuses on literatures published in the past decade (2009–2021) on the adsorption, degradation, transport, weathering, and transformation of C, N, and P species in soil systems with respect to biochar applications.


1994 ◽  
Vol 102 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Robert D. Tucker ◽  
Charles F. Gower
Keyword(s):  

2010 ◽  
Vol 44 (11) ◽  
pp. 3487-3495 ◽  
Author(s):  
Jeroen J.M. Geurts ◽  
Alfons J.P. Smolders ◽  
Artur M. Banach ◽  
Jan P.M. van de Graaf ◽  
Jan G.M. Roelofs ◽  
...  

1982 ◽  
Vol 19 (8) ◽  
pp. 1627-1634 ◽  
Author(s):  
A. Turek ◽  
R. N. Robinson

Precambrian basement in the Windsor–Chatham–Sarnia area is covered by Paleozoic rocks that are up to 1300 m thick. The basement surface is characterized by a northeast–southwest arch system with a relief of about 350 m. Extensive oil and gas drilling has penetrated and sampled this basement, and an examination of core and chip samples from 133 holes and an assessment of the magnetic anomaly map of the area have been used to produce a lithologic map of the Precambrian basement. The predominant rocks are granite gneisses and syenite gneisses but also significant are gabbros, granodiorite gneisses, and metasedimentary rocks. The average foliation dips 50° and is inferred to have a northeasterly trend. The Precambrian basement has been regarded as part of the Grenville Province. An apparent Rb–Sr whole rock isochron, for predominantly meta-igneous rocks, yields an age of 1560 ± 140 Ma. This we interpret as pre-Grenvillian, surviving the later imprint of the Grenvillian Orogeny. Points excluded from the isochron register ages of 1830, 915, and 670 Ma, and can be interpreted as geologically meaningful.


1995 ◽  
Vol 7 (1) ◽  
pp. 73-85 ◽  
Author(s):  
A.D. Morrison ◽  
A. Reay

At Terra Cotta Mountain, in the Taylor Glacier region of south Victoria Land, a 237 m thick Ferrar Dolerite sill is intruded along the unconformity between basement granitoids and overlying Beacon Supergroup sedimentary rocks. Numerous Ferrar Dolerite dykes intrude the Beacon Supergroup and represent later phases of intrusion. Major and trace element data indicate variation both within and between the separate intrusions. Crystal fractionation accounts for much of the geochemical variation between the intrusive events. However, poor correlations between many trace elements require the additional involvement of open system processes. Chromium is decoupled from highly incompatible elements consistent with behaviour predicted for a periodically replenished, tapped and fractionating magma chamber. Large ion lithophile element-enrichment and depletion in Nb, Sr, P and Ti suggests the addition of a crustal component or an enriched mantle source. The trace element characteristics of the Dolerites from Terra Cotta Mountain are similar to those of other Ferrar Group rocks from the central Transantarctic Mountains and north Victoria Land, as well as with the Tasmanian Dolerites. This supports current ideas that the trace element signature of the Ferrar Group is inherited from a uniformly enriched mantle source region.


Sign in / Sign up

Export Citation Format

Share Document