Quantifying mineral-specific reactive surface areas in intact basalt using SEM imaging

2021 ◽  
Author(s):  
John Byng ◽  
Adedapo Awolayo ◽  
Benjamin Tutolo
1990 ◽  
Vol 84 (1-4) ◽  
pp. 334-336 ◽  
Author(s):  
A.F. Withe ◽  
M. Peterson

2022 ◽  
Vol 5 (1) ◽  
pp. 90
Author(s):  
Maria Kouroutzi ◽  
Antonios Stratidakis ◽  
Marianthi Kermenidou ◽  
Spyros Karakitsios ◽  
Dimosthenis Sarigiannis

A novel roofing tile was developed containing various types of nanoparticles of titanium dioxide (TiO2). Experiments were conducted using three types of TiO2 nanoparticles with and without polyethylene glycol (PEG). All types of newly developed nanomaterials were characterized using X-ray diffractometry. Particle size distribution analysis was performed and specific surface area was determined using the Brunauer–Emmet–Teller method. SEM imaging was used for the morphological characterization of nanoparticles. Commercial ceramic roofing tiles underwent a dip-coating procedure to obtain the desired photocatalytic surface. The TiO2 anatase samples exhibited greater surface areas of nanoparticles, thus providing potentially the highest photocatalytic efficiency.


Author(s):  
R.F. Dodson ◽  
L.W-F Chu ◽  
N. Ishihara

The extent of damage surrounding an implanted electrode in the cerebral cortex is a question of significant importance with regard to attaining consistency and validity of physiological recordings. In order to determine the extent of such tissue changes, 150 micron diameter platinum electrodes were implanted in the cortex of four adult baboons, and after eight days the animals were sacrificed by whole body perfusion with a 3% glutaraldehyde in 0.1M phosphate fixative.The calvarium was carefully removed and the electrode tracts were readily discernible in the firm, glutaraldehyde fixed tissue.Careful dissection of the zone of the electrode tract resulted in a small block which was further sectioned into tip, mid-tract and surface areas. Ultrastructurally, damage extended from the electrode sheath to the greatest extent of from 0.2 to 3.5 mm.


Author(s):  
Adrian F. van Dellen

The morphologic pathologist may require information on the ultrastructure of a non-specific lesion seen under the light microscope before he can make a specific determination. Such lesions, when caused by infectious disease agents, may be sparsely distributed in any organ system. Tissue culture systems, too, may only have widely dispersed foci suitable for ultrastructural study. In these situations, when only a few, small foci in large tissue areas are useful for electron microscopy, it is advantageous to employ a methodology which rapidly selects a single tissue focus that is expected to yield beneficial ultrastructural data from amongst the surrounding tissue. This is in essence what "LIFTING" accomplishes. We have developed LIFTING to a high degree of accuracy and repeatability utilizing the Microlift (Fig 1), and have successfully applied it to tissue culture monolayers, histologic paraffin sections, and tissue blocks with large surface areas that had been initially fixed for either light or electron microscopy.


Author(s):  
Z. L. Wang ◽  
J. Bentley

Studying the behavior of surfaces at high temperatures is of great importance for understanding the properties of ceramics and associated surface-gas reactions. Atomic processes occurring on bulk crystal surfaces at high temperatures can be recorded by reflection electron microscopy (REM) in a conventional transmission electron microscope (TEM) with relatively high resolution, because REM is especially sensitive to atomic-height steps.Improved REM image resolution with a FEG: Cleaved surfaces of a-alumina (012) exhibit atomic flatness with steps of height about 5 Å, determined by reference to a screw (or near screw) dislocation with a presumed Burgers vector of b = (1/3)<012> (see Fig. 1). Steps of heights less than about 0.8 Å can be clearly resolved only with a field emission gun (FEG) (Fig. 2). The small steps are formed by the surface oscillating between the closely packed O and Al stacking layers. The bands of dark contrast (Fig. 2b) are the result of beam radiation damage to surface areas initially terminated with O ions.


Author(s):  
M. Marko ◽  
A. Leith ◽  
D. Parsons

The use of serial sections and computer-based 3-D reconstruction techniques affords an opportunity not only to visualize the shape and distribution of the structures being studied, but also to determine their volumes and surface areas. Up until now, this has been done using serial ultrathin sections.The serial-section approach differs from the stereo logical methods of Weibel in that it is based on the Information from a set of single, complete cells (or organelles) rather than on a random 2-dimensional sampling of a population of cells. Because of this, it can more easily provide absolute values of volume and surface area, especially for highly-complex structures. It also allows study of individual variation among the cells, and study of structures which occur only infrequently.We have developed a system for 3-D reconstruction of objects from stereo-pair electron micrographs of thick specimens.


Sign in / Sign up

Export Citation Format

Share Document