scholarly journals Groundwater Flow Model In The Center Of West Progo Dome, Kaligesing, Purworejo, Central Java And Its Surrounding Area, Based On Hydrochemical And Isotopic Characteristics

2021 ◽  
Vol 71 ◽  
pp. 227-241
Author(s):  
T. Listyani R.A. ◽  
◽  
Nana Sulaksana ◽  
Boy Yoseph C.S.S.S.A. ◽  
Adjat Sudradjat ◽  
...  

Groundwater studies were carried out in the center of the West Progo Dome, at Kaligesing, Purworejo District, Central Java, and its surrounding area, with an emphasis on hydrochemical problems. As a water-scarce area, groundwater studies are urgently needed in this area. This research is intended as a hydrogeological study with the aim of knowing the conceptual groundwater flow model in the study area. The method used is a field hydrogeological survey as well as hydrochemical and natural isotope analysis supported by chemical and groundwater isotope data. Less clear hydrochemical evolution indicates that the process of groundwater flow is dominant in the local flow system. Groundwater facies is dominated by bicarbonate type, neutral pH, relatively low total dissolved solid (TDS), and electric conductivity (EC), and influenced by season or rainfall. The dominant hydrochemical processes in the groundwater system are leaching, ion exchange, sulfate reduction, and dilution. Groundwater facies is determined by the rock minerals marked by differences in hardness and TDS. Whereas, stable isotope contents of groundwater vary from light to heavy. Springs with light isotopes show the circulation of deep groundwater flow or from a relatively high recharge zone, either locally or from other places around it. Isotopic enrichment in all seasons can occur due to evaporation or mixing with surface water that has undergone previous evapotranspiration, indicated by increasing of heavy isotopes or δD-excess (d) of groundwater. There are two types of groundwater flow patterns, namely shallow and deep groundwater flow patterns. Shallow groundwater is characterized by heavy isotopes, shifted with relatively small d. Deep groundwater circulation pattern is characterized by a consistent, light δD value and appreciable d.

Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Ioannis Gkiougkis ◽  
Christos Pouliaris ◽  
Fotios-Konstantinos Pliakas ◽  
Ioannis Diamantis ◽  
Andreas Kallioras

In this paper, the development of the conceptual and groundwater flow model for the coastal aquifer system of the alluvial plain of River Nestos (N. Greece), that suffers from seawater intrusion due to over-pumping for irrigation, is analyzed. The study area is a typical semi-arid hydrogeologic environment, composed of a multi-layer granular aquifers that covers the eastern coastal delta system of R. Nestos. This study demonstrates the results of a series of field measurements (such as geophysical surveys, hydrochemical and isotopical measurements, hydro-meteorological data, land use, irrigation schemes) that were conducted during the period 2009 to 2014. The synthesis of the above resulted in the development of the conceptual model for this aquifer system, that formed the basis for the application of the mathematical model for simulating groundwater flow. The mathematical modeling was achieved using the finite difference method after the application of the USGS code MODFLOW-2005.


Author(s):  
Samrit Luoma ◽  
Juha Majaniemi ◽  
Arto Pullinen ◽  
Juha Mursu ◽  
Joonas J. Virtasalo

AbstractThree-dimensional geological and groundwater flow models of a submarine groundwater discharge (SGD) site at Hanko (Finland), in the northern Baltic Sea, have been developed to provide a geological framework and a tool for the estimation of SGD rates into the coastal sea. The dataset used consists of gravimetric, ground-penetrating radar and shallow seismic surveys, drill logs, groundwater level monitoring data, field observations, and a LiDAR digital elevation model. The geological model is constrained by the local geometry of late Pleistocene and Holocene deposits, including till, glacial coarse-grained and fine-grained sediments, post-glacial mud, and coarse-grained littoral and aeolian deposits. The coarse-grained aquifer sediments form a shallow shore platform that extends approximately 100–250 m offshore, where the unit slopes steeply seawards and becomes covered by glacial and post-glacial muds. Groundwater flow preferentially takes place in channel-fill outwash coarse-grained sediments and sand and gravel interbeds that provide conduits of higher hydraulic conductivity, and have led to the formation of pockmarks on the seafloor in areas of thin or absent mud cover. The groundwater flow model estimated the average SGD rate per square meter of the seafloor at 0.22 cm day−1 in autumn 2017. The average SGD rate increased to 0.28 cm day−1 as a response to an approximately 30% increase in recharge in spring 2020. Sensitivity analysis shows that recharge has a larger influence on SGD rate compared with aquifer hydraulic conductivity and the seafloor conductance. An increase in recharge in this region will cause more SGD into the Baltic Sea.


2018 ◽  
Vol 7 (1) ◽  
pp. 22 ◽  
Author(s):  
Muhammad Usman ◽  
Thomas Reimann ◽  
Rudolf Liedl ◽  
Azhar Abbas ◽  
Christopher Conrad ◽  
...  

2021 ◽  
pp. 91-97
Author(s):  
V. V. Suskin ◽  
A. V. Rastorguev ◽  
I. V. Kapyrin

This article discusses a three-dimensional groundwater flow model of a deep disposal facility at Severny test site. The three-dimensional model is a part of the certified software GEOPOLIS, based on the hydrogeological code GeRa (Geomigration of Radionuclides) serving as the calculation engine. This study describes the hydrogeological patterning of the groundwater flow model, as well as the results of calibration and verification of the model water heads with respect to the data of monitoring for more than 40 years of the deep repository exploitation. The article begins with a brief overview of the previously developed hydrogeological models of this object and continues with a description of the geological structure of the territory, and with a substantiation of the boundaries and parameters of the model. The results of groundwater flow modeling, model calibration, verification and estimation of discrepancy between the model results and monitoring data are shown. The comparison of the modeled and observed water heads in the stationary conditions (before the start of injection) and during operation of the deep repository allows making conclusion on the quality of calibration.


2018 ◽  
Vol 42 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Shahpara Sheikh Dola ◽  
Khairul Bahsar ◽  
Mazeda Islam ◽  
Md Mizanur Rahman Sarker

Attempt has been made to find the relationship between the basin groundwater flow and the current water chemistry of south-western part of Bangladesh considering their lithological distribution and aquifer condition. The correlation of water chemistry and basin groundwater flow is depicted in the conceptual model. The water-types of shallow groundwater are predominantly Mg-Na-HCO3 and Ca- Mg-Na-HCO3 type. In the deep aquifer of upper delta plain is predominately Na-Cl, Ca-HCO3 and Mg- HCO3 type. In the lower delta plain Na-Cl type of water mainly occurs in the shallow aquifer and occasionally Ca-HCO3, Ca-Mg-Na-HCO3 and Mg-HCO3 type may also occur in shallow aquifer of the eastern part of lower delta plain which could have originated from the recent recharge of rain water. Na- Cl type water is also found in the deep aquifer of lower delta plain. The origin of Na-Cl type water in the deep aquifer of lower delta part might be connate water or present day sea water intrusion. Fresh water occurring in the deep aquifer in the lower delta area is mostly of Mg-Ca-HCO3 and Na-HClO3 types. This type of water originate from intermediate or deep basin flow from the northern part of Bangladesh. The probable source of deep groundwater is Holocene marine transgression (Khan et al. 2000) occurred in 3000–7000 cal years BP and the deep groundwater of Upper Delta plain and Lower Delta plain is clearly influenced by deep basin flow coming from north part of BangladeshJournal of Bangladesh Academy of Sciences, Vol. 42, No. 1, 41-54, 2018


1992 ◽  
Vol 29 (4) ◽  
pp. 696-701
Author(s):  
Denis Isabel ◽  
Pierre Gélinas ◽  
Jacques Locat

The groundwater pollution case at Mercier is a very complex one. Groundwater flow modeling has been a valuable tool in the assessment of this large environmental problem. However, due to the complexity of the hydrogeological setting, the modeling has been performed with various simple case models in lieu of a large complex model. Here we report the results of one of these piecewise modeling tasks that proved very useful in the explanation of the strong upward gradients observed in the bedrock aquifer. These results and their interpretation prove the usefulness of the piecewise modeling strategy in this case. Key words : ground water modeling, finite elements.


Sign in / Sign up

Export Citation Format

Share Document