scholarly journals Um método para detectar a aceitação ou rejeição de hipóteses ou teorias: Morgan e a Teoria Cromossômica (1903-1911)

2013 ◽  
Vol 25 (36) ◽  
pp. 107
Author(s):  
Lilian Al-Chueyr Pereira Martins ◽  
Maria Elice Brzezinski Prestes

Filósofos e historiadores da ciência oferecem explicações para cientistas aceitarem ou rejeitaremuma dada hipótese ou teoria, mas, de um modo geral, não apresentam critérios que permitamdeterminar de maneira clara o que seja aceitação e o que seja rejeição. Com o intuitode contribuir para elucidar este problema, foi proposto um método de análise em Martinse Martins (1999), exemplificado pelo posicionamento do naturalista inglês William Bateson (1861-1926) diante da teoria cromossômica, no período compreendido entre 1902 e 1926.O objetivo deste artigo é aplicar o método de análise acima mencionado para esclarecer aposição adotada pelo zoólogo Thomas Hunt Morgan (1866-1945) diante da hipótese/teoriacromossômica, no período compreendido entre 1903 e 1910-1911. Nossa análise mostraque Morgan rejeitou a teoria cromossômica no período considerado e que sua mudançarepentina de opinião se deveu a uma estratégia profissional.

2021 ◽  
Vol 16 (2) ◽  
pp. 209-236
Author(s):  
Larissa Nunes Durigan ◽  
Lilian Al-Chueyr Pereira Martins

O presente artigo se refere ao período da chamada genética clássica. Seu objetivo é discutir sobre as concepções e terminologia aplicadas ao material hereditário entre 1900 (“redescoberta” do trabalho de Mendel) e a publicação do livro The theory of the gene (1926) de Thomas Hunt Morgan (1866-1945), procurando averiguar se houve mudanças em relação a esses aspectos durante o período. O foco de nossa análise são as contribuições de dois grupos: o grupo britânico liderado por William Bateson (1861-1926) e o grupo norte-americano, liderado por Morgan. No período estudado, a terminologia foi mudando de “fator”, “caracteres”, “caracteres-unitários” e “gene”, que foi adotado a partir de 1926. Apesar de Bateson e Morgan considerarem que os agentes hereditários estivessem nas células germinativas, desconheciam sua composição. Esta pesquisa mostrou que durante o estabelecimento de uma nova área de estudo vão ocorrendo modificações em relação à terminologia empregada bem como à conotação dos termos, até que haja um consenso por parte da comunidade científica que os adote.


Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 645-646
Author(s):  
Gerald R Smith ◽  
Mark Johnston
Keyword(s):  

2003 ◽  
Vol 11 (04) ◽  
pp. 341-350 ◽  
Author(s):  
D. R. Forsdyke

Sometimes a cross between two individuals that appear to belong to the same species produces a sterile offspring (i.e., their hybrid is sterile). Thus, the two individuals appear reproductively isolated from each other. If each could find a compatible mate, then new species might emerge. At issue is whether the form of hybrid sterility that precedes sympatric differentiation into species is, in the general case, of genic or non-genic origin. Several recent papers lend the authority of William Bateson to the genic hypothesis, referring to the "Bateson–Dobzhansky–Muller hypothesis". All these papers cite a 1996 paper that, in turn, cites a 1909 paper of Bateson. However, from 1902 until 1926 the latter espoused a non-genic hypothesis that today would be classified as "chromosomal". Analysis of Bateson's 1909 text reveals no recantation. Bateson's non-genic view was similar to that advanced by Richard Goldschmidt in the 1940s. However, Bateson proposed a contribution from parents of abstract factors that, together in their hybrids, complement to bring about a negative effect (hybrid sterility). In contrast, Goldschmidt proposed that normally parents contribute complementary factors making parental chromosomes compatible at meiosis in their hybrids, which hence are fertile (i.e., the parental factors work together to produce a positive effect). When the factors are not sufficiently complementary the parental chromosomes are incompatible in their hybrids, which hence are sterile. The non-genic Batesonian–Goldschmidtian abstractions are now being fleshed-out chemically in terms of DNA base-composition differences.


2021 ◽  
Vol 113 (1) ◽  
pp. 107-135
Author(s):  
Bert Leuridan

Abstract Gregor Mendel, Thomas Hunt Morgan and experiments in classical geneticsIn the middle of the 19th century, Gregor Mendel performed a series of crosses with pea plants to investigate how hybrids are formed. Decades later, Thomas Hunt Morgan finalized the theory of classical genetics. An important aspect of Mendel’s and Morgan’s scientific approach is that they worked in a systematic, experimental fashion. But how did these experiments proceed? What is the relation between these experiments and Mendel’s and Morgan’s explanatory theories? What was their evidential value? Using present-day insights in the nature of experimentation I will show that the answer to these questions is fascinating but not obvious. Crossings in classical genetics lacked a crucial feature of traditional experiments for causal discovery: manipulation of the purported causes. Hence they were not traditional, ‘manipulative’ experiments, but ‘selective experiments’.


Author(s):  
Anthony Chaney

This chapter places Bateson's work with dolphins within a broader 1960s "dolphin mystique"--a cultural site where anxieties over modern science’s physical models went unresolved. Most associated with scientist John C. Lilly, the dolphin mystique had futurist, utilitarian, and romantic components, also found in a similar "outer space mystique." The chapter shows how Lilly's and Bateson's research goals differed through a further substantiation of the sources of Bateson's thought: the Macy Conferences on Cybernetics (his theory of play, the concepts of positive feedback, negative feedback, servomechanisms, and the naturalization of teleology); and his father William Bateson and his career amid the ongoing conflict between Darwinist and Lamarckian theories of evolution. In Hawaii, Bateson expressed his isolation from potential peers and research frustrations in letters to old friend and Darwin granddaughter/scholar Nora Barlow. This isolation, however, allowed Bateson to articulate a justification for scientific inquiry that was neither utilitarian nor a value-neutral pursuit of truth, but an effort to establish an accurate depiction of the relationship between nature and the human self, which he called the riddle of the Sphinx.


1994 ◽  
Vol 40 ◽  
pp. 265-280 ◽  

Barbara McClintock’s remarkable life spanned the history of genetics in the 20th century. Though technically rooted in Mendel’s experiments carried out decades earlier, the science of genetics began with the rediscovery of his work at the turn of the century. In 1902, the year of McClintock’s birth, William Bateson wrote prophetically that ‘an exact determination of the laws of heredity will probably work more change in man’s outlook on the world, and in his power over nature, than any other advance in natural knowledge that can be clearly foreseen’. Indeed, the science of genetics, to which McClintock made seminal contributions, both experimental and conceptual, has come to dominate all of the biological sciences, from molecular biology, through cell and developmental biology, to medicine and agriculture. And Bateson’s immodest guess was arguably an underestimate of the impact of genetic knowledge on humanity.


Sign in / Sign up

Export Citation Format

Share Document