scholarly journals Contribution to ECDIS Reliability using Markov Model

2014 ◽  
Vol 3 (2) ◽  
pp. 149-157 ◽  
Author(s):  
Dean Sumić ◽  
Dragan Peraković ◽  
Marinko Jurčević

An Integrated Bridge System (IBS) contains a fully duplicated Electronic Chart Display and Information System (ECDIS). Although duplication should increase system reliability, reliability and availability are not improved. Proper ECDIS maintenance includes updating both: the information system and the provided chart system. This procedure, in practice, tends to decrease reliability and availability. A Markov ECDIS simulation model is given. A new design concept is presented and proposed. The entire ECDIS system is improved by adding a cold standby system preventing the occurrence of errors due to updating and upgrading of the system device.

2018 ◽  
Vol 175 ◽  
pp. 03060
Author(s):  
Di Peng ◽  
Ni Zichun ◽  
Hu Bin

For different importance of components in equipment system, a cold standby system with two different components is studied when important components enjoy the priority in use and maintenance. Considering the application of exponential distribution, Weibull distribution and other typical distributions in resolving the problems subject to complicated calculation and strict constraints in the past reliability modelling, the highly applicable phase-type (PH) distribution is utilized to describe the life and maintenance time of system components in a unified manner. A system reliability model is built for wider applicability. With the matrix analysis method, expressions are obtained for a number of reliability indicators such as system reliability function, steady-state availability, mean up time and mean down time of system. In the end, examples are presented to verify the correctness and applicability of the model.


Author(s):  
Min Gong ◽  
Hanlin Liu ◽  
Rui Peng

In system design process, standby redundancy is a widely used technique to improve system reliability and availability. Typical standby techniques involve cold standby, hot standby, and warm standby. In this article, we investigate the repairable K-out-of- N system with mixed standby strategy containing both warm and cold standby. In the proposed system, each component can be in failure, cold, warm, and active states and the components are assumed to be repairable. The systems are modeled by continuous time Markov chain and the system long-run availability is derived. Furthermore, the optimal configuration of standby components in the system is studied considering both system availability and system running cost. Illustrative examples are presented to show the applications of the proposed model.


2012 ◽  
Vol 241-244 ◽  
pp. 2051-2054
Author(s):  
Jia Xuan Yang ◽  
Qing Wu Wang

In order to evaluate the ship traffic safety about the large water area, the system of maritime macroscopic traffic safety was developed, which can give the simulation result under the setting conditions, using the electronic chart display and information system conform to S57 and S52. The simulation model of ship traffic flow is proposed, which play an important part in the system. The outcome can be provided according to the assessment method of maritime safety, and displayed on the ECDIS. With the clicking on the icons by the mouse button, the information about the simulation can be offered.


2019 ◽  
Vol 25 (2) ◽  
pp. 182-198
Author(s):  
Faqun Qi ◽  
Binghai Zhou

Purpose The purpose of this paper is to develop novel preventive maintenance (PM) modeling methods for a cold standby system subject to two types of failures: random failure and deterioration failure. Design/methodology/approach The system consists of two components and a single repair shop, assuming that the repair shop can only service for one component at a time. Based on semi-Markov theory, transition probabilities between all possible system states are discussed. With the transition probabilities, Markov renewal equations are established at regenerative points. By solving the Markov regenerative equations, the mean time from the initial state to system failure (MTSF) and the steady state availability (SSA) are formulated as two reliability measures for different reliability requirements of systems. The optimal PM policies are obtained when MTSF and SSA are maximized. Findings The result of simulation experiments verifies that the derived maintenance models are effective. Sensitivity analysis revealed the significant influencing factors for optimal PM policy for cold standby systems when different system reliability indexes (i.e. MTSF and SSA) are considered. Furthermore, the results show that the repair for random failure has a tremendous impact on prolonging the MTSF of cold standby system and PM plays a greater role in promoting the system availability of a cold standby system than it does in prolonging the MTSF of system. Practical implications In practical situations, system not only suffers normal deterioration caused by internal factors, but also undergoes random failures influenced by random shocks. Therefore, multiple failure types are needed to be considered in maintenance modeling. The result of the sensitivity analysis has an instructional role in making maintenance decisions by different system reliability indexes (i.e. MTSF and SSA). Originality/value This paper presents novel PM modeling methods for a cold standby system subject to two types of failures: random failure and deterioration failure. The sensitivity analysis identifies the significant influencing factors for optimal maintenance policy by different system reliability indexes which are useful for the managers for further decision making.


2014 ◽  
Vol 590 ◽  
pp. 763-767
Author(s):  
Zhi Hui Huang

This paper aiming at the zero-failure data and uncertain-decision problems exist in the information system reliability growth process, it proposes to build the Bayesian network topology of FMEA. It adopts Leaky Noisy-OR model, and it analyses the probability that the subsystem functional module will go wrong in quantity. It solves the problem of identifying the vague and incomplete information exists in the complex system rapidly and accurately, laying the foundation for further study of the reliability growth comprehensive ability assessment of system based on the Bayesian network. In this paper, on the background of Manufacturing Execution Systems (MES) engineering, aimed at research on models and evaluation methods of reliability growth for MES, enclosing reliability of MES task and design target, reliability growth test and analysis methods, it proposes the goal of MES reliability growth planning.


Sign in / Sign up

Export Citation Format

Share Document