scholarly journals Application of Satellite Imagery and Water Indices to the Hydrography of the Cetina RiverBasin (Middle Adriatic)

2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Tea Duplančić Leder ◽  
Nenad Leder ◽  
Martina Baučić

The paper gives a brief description of the remote sensing method used for the identification and extraction of water surfaces. Landsat 8 and Sentinel 2 satellite imagery was used to separate land from bodies of water in the complex karst area surrounding the Croatian Cetina River, flowing into the Adriatic Sea. Water indexing methods are presented in detail. The most frequently used water indices were selected: NDWI, MNDWI, AWEI_nsh, AWEI_sh, WRI and LSWI, and their results compared. The combination of satellite imagery and calculated water indices is concluded to be very useful for the identification and mapping of the area and banks of lakes, riverine zones, river mouths and the coastline in the coastal zone. Landsat 8 satellite imagery is slightly inferior to Sentinel 2 due to lower image resolution. The best results were obtained with the NDWI water index and the worst with LSWI.

Water ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 256 ◽  
Author(s):  
Yan Zhou ◽  
Jinwei Dong ◽  
Xiangming Xiao ◽  
Tong Xiao ◽  
Zhiqi Yang ◽  
...  

Open surface water bodies play an important role in agricultural and industrial production, and are susceptible to climate change and human activities. Remote sensing data has been increasingly used to map open surface water bodies at local, regional, and global scales. In addition to image statistics-based supervised and unsupervised classifiers, spectral index- and threshold-based approaches have also been widely used. Many water indices have been proposed to identify surface water bodies; however, the differences in performances of these water indices as well as different sensors on water body mapping are not well documented. In this study, we reviewed and compared existing open surface water body mapping approaches based on six widely-used water indices, including the tasseled cap wetness index (TCW), normalized difference water index (NDWI), modified normalized difference water index (mNDWI), sum of near infrared and two shortwave infrared bands (Sum457), automated water extraction index (AWEI), land surface water index (LSWI), as well as three medium resolution sensors (Landsat 7 ETM+, Landsat 8 OLI, and Sentinel-2 MSI). A case region in the Poyang Lake Basin, China, was selected to examine the accuracies of the open surface water body maps from the 27 combinations of different algorithms and sensors. The results showed that generally all the algorithms had reasonably high accuracies with Kappa Coefficients ranging from 0.77 to 0.92. The NDWI-based algorithms performed slightly better than the algorithms based on other water indices in the study area, which could be related to the pure water body dominance in the region, while the sensitivities of water indices could differ for various water body conditions. The resultant maps from Landsat 8 and Sentinel-2 data had higher overall accuracies than those from Landsat 7. Specifically, all three sensors had similar producer accuracies while Landsat 7 based results had a lower user accuracy. This study demonstrates the improved performance in Landsat 8 and Sentinel-2 for open surface water body mapping efforts.


2020 ◽  
Vol 12 (20) ◽  
pp. 3376 ◽  
Author(s):  
Giovanni Romano ◽  
Giovanni Francesco Ricci ◽  
Francesco Gentile

In recent decades, technological advancements in sensors have generated increasing interest in remote sensing data for the study of vegetation features. Image pixel resolution can affect data analysis and results. This study evaluated the potential of three satellite images of differing resolution (Landsat 8, 30 m; Sentinel-2, 10 m; and Pleiades 1A, 2 m) in assessing the Leaf Area Index (LAI) of riparian vegetation in two Mediterranean streams, and in both a winter wheat field and a deciduous forest used to compare the accuracy of the results. In this study, three different retrieval methods—the Caraux-Garson, the Lambert-Beer, and the Campbell and Norman equations—are used to estimate LAI from the Normalized Difference Vegetation Index (NDVI). To validate sensor data, LAI values were measured in the field using the LAI 2200 Plant Canopy Analyzer. The statistical indices showed a better performance for Pleiades 1A and Landsat 8 images, the former particularly in sites characterized by high canopy closure, such as deciduous forests, or in areas with stable riparian vegetation, the latter where stable reaches of riparian vegetation cover are almost absent or very homogenous, as in winter wheat fields. Sentinel-2 images provided more accurate results in terms of the range of LAI values. Considering the different types of satellite imagery, the Lambert-Beer equation generally performed best in estimating LAI from the NDVI, especially in areas that are geomorphologically stable or have a denser vegetation cover, such as deciduous forests.


2020 ◽  
Vol 12 (21) ◽  
pp. 3539
Author(s):  
Haifeng Tian ◽  
Jie Pei ◽  
Jianxi Huang ◽  
Xuecao Li ◽  
Jian Wang ◽  
...  

Garlic and winter wheat are major economic and grain crops in China, and their boundaries have increased substantially in recent decades. Updated and accurate garlic and winter wheat maps are critical for assessing their impacts on society and the environment. Remote sensing imagery can be used to monitor spatial and temporal changes in croplands such as winter wheat and maize. However, to our knowledge, few studies are focusing on garlic area mapping. Here, we proposed a method for coupling active and passive satellite imagery for the identification of both garlic and winter wheat in Northern China. First, we used passive satellite imagery (Sentinel-2 and Landsat-8 images) to extract winter crops (garlic and winter wheat) with high accuracy. Second, we applied active satellite imagery (Sentinel-1 images) to distinguish garlic from winter wheat. Third, we generated a map of the garlic and winter wheat by coupling the above two classification results. For the evaluation of classification, the overall accuracy was 95.97%, with a kappa coefficient of 0.94 by eighteen validation quadrats (3 km by 3 km). The user’s and producer’s accuracies of garlic are 95.83% and 95.85%, respectively; and for the winter wheat, these two accuracies are 97.20% and 97.45%, respectively. This study provides a practical exploration of targeted crop identification in mixed planting areas using multisource remote sensing data.


2020 ◽  
Vol 12 (10) ◽  
pp. 1611
Author(s):  
Feifei Pan ◽  
Xiaohuan Xi ◽  
Cheng Wang

A comparative study of water indices and image classification algorithms for mapping inland water bodies using Landsat imagery was carried out through obtaining 24 high-resolution (≤5 m) and cloud-free images archived in Google Earth with the same (or ±1 day) acquisition dates as the Landsat-8 OLI images over 24 selected lakes across the globe, and developing a method to generate the alternate ground truth data from the Google Earth images for properly evaluating the Landsat image classification results. In addition to the commonly used green band-based water indices, Landsat-8 OLI’s ultra-blue, blue, and red band-based water indices were also tested in this research. Two unsupervised (the zero-water index threshold H0 method and Otsu’s automatic threshold selection method) and one supervised (the k-nearest neighbor (KNN) method) image classification algorithms were employed for conducting the image classification. Through comparing a total of 2880 Landsat image classification results with the alternate ground truth data, this study showed that (1) it is not necessary to use some supervised image classification methods for extracting water bodies from Landsat imagery given the high computational cost associated with the supervised image classification algorithms; (2) the unsupervised classification algorithms such as the H0 and Otsu methods could achieve comparable accuracy as the KNN method, although the H0 method produced more large error outliers than the Otsu method, thus the Otsu method is better than the H0 method; and (3) the ultra-blue band-based AWEInsuB is the best water index for the H0 method, and the ultra-blue band-based MNDWI2uB is the best water index for both the Otsu and KNN methods.


2021 ◽  
Vol 62 (1) ◽  
pp. 1-9
Author(s):  
Hung Le Trinh ◽  
Ha Thu Thi Le ◽  
Loc Duc Le ◽  
Long Thanh Nguyen ◽  

Classification of built-up land and bare land on remote sensing images is a very difficult problem due to the complexity of the urban land cover. Several urban indices have been proposed to improve the accuracy in classifying urban land use/land cover from optical satellite imagery. This paper presents an development of the EBBI (Enhanced Built-up and Bareness Index) index based on the combination of Landsat 8 and Sentinel 2 multi-resolution satellite imagery. Near infrared band (band 8a), short wave infrared band (band 11) of Sentinel 2 MSI image and thermal infrared band (band 10) Landsat 8 image were used to calculate EBBI index. The results obtained show that the combination of Landsat 8 and Sentinel 2 satellite images improves the spatial resolution of EBBI index image, thereby improving the accuracy of classification of bare land and built-up land by about 5% compared with the case using only Landsat 8 images.


2019 ◽  
Vol 11 (24) ◽  
pp. 2984 ◽  
Author(s):  
Robbi Bishop-Taylor ◽  
Stephen Sagar ◽  
Leo Lymburner ◽  
Imam Alam ◽  
Joshua Sixsmith

Accurately mapping the boundary between land and water (the ‘waterline’) is critical for tracking change in vulnerable coastal zones, and managing increasingly threatened water resources. Previous studies have largely relied on mapping waterlines at the pixel scale, or employed computationally intensive sub-pixel waterline extraction methods that are impractical to implement at scale. There is a pressing need for operational methods for extracting information from freely available medium resolution satellite imagery at spatial scales relevant to coastal and environmental management. In this study, we present a comprehensive evaluation of a promising method for mapping waterlines at sub-pixel accuracy from satellite remote sensing data. By combining a synthetic landscape approach with high resolution WorldView-2 satellite imagery, it was possible to rapidly assess the performance of the method across multiple coastal environments with contrasting spectral characteristics (sandy beaches, artificial shorelines, rocky shorelines, wetland vegetation and tidal mudflats), and under a range of water indices (Normalised Difference Water Index, Modified Normalised Difference Water Index, and the Automated Water Extraction Index) and thresholding approaches (optimal, zero and automated Otsu’s method). The sub-pixel extraction method shows a strong ability to reproduce both absolute waterline positions and relative shape at a resolution that far exceeds that of traditional whole-pixel methods, particularly in environments without extreme contrast between the water and land (e.g., accuracies of up to 1.50–3.28 m at 30 m Landsat resolution using optimal water index thresholds). We discuss key challenges and limitations associated with selecting appropriate water indices and thresholds for sub-pixel waterline extraction, and suggest future directions for improving the accuracy and reliability of extracted waterlines. The sub-pixel waterline extraction method has a low computational overhead and is made available as an open-source tool, making it suitable for operational continental-scale or full time-depth analyses aimed at accurately mapping and monitoring dynamic waterlines through time and space.


2020 ◽  
Vol 117 ◽  
pp. 103332 ◽  
Author(s):  
Zakaria Adiri ◽  
Rachid Lhissou ◽  
Abderrazak El Harti ◽  
Amine Jellouli ◽  
Mohcine Chakouri

2019 ◽  
Vol 11 (18) ◽  
pp. 2184 ◽  
Author(s):  
Baik ◽  
Son ◽  
Kim

On 15 November 2017, liquefaction phenomena were observed around the epicenter after a 5.4 magnitude earthquake occurred in Pohang in southeast Korea. In this study, we attempted to detect areas of sudden water content increase by using SAR (synthetic aperture radar) and optical satellite images. We analyzed coherence changes using Sentinel-1 SAR coseismic image pairs and analyzed NDWI (normalized difference water index) changes using Landsat 8 and Sentinel-2 optical satellite images from before and after the earthquake. Coherence analysis showed no liquefaction-induced surface changes. The NDWI time series analysis models using Landsat 8 and Sentinel-2 optical images confirmed liquefaction phenomena close to the epicenter but could not detect liquefaction phenomena far from the epicenter. We proposed and evaluated the TDLI (temporal difference liquefaction index), which uses only one SWIR (short-wave infrared) band at 2200 nm, which is sensitive to soil moisture content. The Sentinel-2 TDLI was most consistent with field observations where sand blow from liquefaction was confirmed. We found that Sentinel-2, with its relatively shorter revisit period compared to that of Landsat 8 (5 days vs. 16 days), was more effective for detecting traces of short-lived liquefaction phenomena on the surface. The Sentinel-2 TDLI could help facilitate rapid investigations and responses to liquefaction damage.


2020 ◽  
Author(s):  
Franz Waldner ◽  
Foivos Diakogiannis

<p>Many of the promises of smart farming centre on assisting farmers to monitor their fields throughout the growing season. Having precise field boundaries has thus become a prerequisite for field-level assessment. When farmers are being signed up by agricultural service providers, they are often asked for precise digital records of their boundaries. Unfortunately, this process remains largely manual, time-consuming and prone to errors which creates disincentives.  There are also increasing applications whereby remote monitoring of crops using earth observation is used for estimating areas of crop planted and yield forecasts. Automating the extraction of field boundaries would facilitate bringing farmers on board, and hence fostering wider adoption of these services, but would also improve products and services to be provided using remote sensing. Several methods to extract field boundaries from satellite imagery have been proposed, but the apparent lack of field boundary data sets seems to indicate low uptake, presumably because of expensive image preprocessing requirements and local, often arbitrary, tuning. Here, we introduce a novel approach with low image preprocessing requirements to extract field boundaries from satellite imagery. It poses the problem as a semantic segmentation problem with three tasks designed to answer the following questions:  1) Does a given pixel belong to a field? 2) Is that pixel part of a field boundary? and 3) What is the distance from that pixel to the closest field boundary? Closed field boundaries and individual fields can then be extracted by combining the answers to these three questions. The tasks are performed with ResUNet-a, a deep convolutional neural network with a fully connected UNet backbone that features dilated convolutions and conditioned inference. First, we characterise the model’s performance at local scale. Using a single composite image from Sentinel-2 over South Africa, the model is highly accurate in mapping field extent, field boundaries, and, consequently, individual fields. Replacing the monthly composite with a single-date image close to the compositing period marginally decreases accuracy. We then show that, without recalibration, ResUNet-a generalises well across resolutions (10 m to 30 m), sensors (Sentinel-2 to Landsat-8), space and time. Averaging model predictions from at least four images well-distributed across the season is the key to coping with the temporal variations of accuracy.  Finally, we apply the lessons learned from the previous experiments to extract field boundaries for the whole of the Australian cropping region. To that aim, we compare three ResUNet-a models which are trained with different data sets: field boundaries from Australia, field boundaries from overseas, and field boundaries from both Australia and overseas (transfer learning).   By minimising image preprocessing requirements and replacing local arbitrary decisions by data-driven ones, our approach is expected to facilitate the adoption of smart farming services and improve land management at scale.</p>


Sign in / Sign up

Export Citation Format

Share Document