scholarly journals Detection of Liquefaction Phenomena from the 2017 Pohang (Korea) Earthquake Using Remote Sensing Data

2019 ◽  
Vol 11 (18) ◽  
pp. 2184 ◽  
Author(s):  
Baik ◽  
Son ◽  
Kim

On 15 November 2017, liquefaction phenomena were observed around the epicenter after a 5.4 magnitude earthquake occurred in Pohang in southeast Korea. In this study, we attempted to detect areas of sudden water content increase by using SAR (synthetic aperture radar) and optical satellite images. We analyzed coherence changes using Sentinel-1 SAR coseismic image pairs and analyzed NDWI (normalized difference water index) changes using Landsat 8 and Sentinel-2 optical satellite images from before and after the earthquake. Coherence analysis showed no liquefaction-induced surface changes. The NDWI time series analysis models using Landsat 8 and Sentinel-2 optical images confirmed liquefaction phenomena close to the epicenter but could not detect liquefaction phenomena far from the epicenter. We proposed and evaluated the TDLI (temporal difference liquefaction index), which uses only one SWIR (short-wave infrared) band at 2200 nm, which is sensitive to soil moisture content. The Sentinel-2 TDLI was most consistent with field observations where sand blow from liquefaction was confirmed. We found that Sentinel-2, with its relatively shorter revisit period compared to that of Landsat 8 (5 days vs. 16 days), was more effective for detecting traces of short-lived liquefaction phenomena on the surface. The Sentinel-2 TDLI could help facilitate rapid investigations and responses to liquefaction damage.

2020 ◽  
Vol 956 (2) ◽  
pp. 40-49
Author(s):  
Le Hung Trinh ◽  
Dinh Sinh Mai ◽  
V.R. Zablotskii

In recent years, land cover changes very quickly in urban areas due to the impact of population growth and socio-economic development. The authors present the method of land cover/land use classification based on the combination of Sentinel 2 and Landsat 8 multi-resolution satellite images. A middle infrared band (band 11), a near infrared (band 8) of Sentinel 2 image and a thermal infrared one (band 10) of Landsat 8 image were used to calculate EBBI (Enhanced Built-up and Barreness Index). The EBBI index and Sentinel 2 spectral bands with spatial resolution 10 m (band 2, 3, 4, 8) were used to classify the land cover. The obtained results showed that, the method of land cover classification based on combination of Sentinel 2 and Landsat 8 satellite images improves the overall accuracy by about 5 % compared with the one using only Sentinel 2 data. The results obtained at the study can be used for the management, assessment and monitoring the status and dynamics of land cover in urban areas.


2020 ◽  
Vol 4 (1) ◽  
pp. 21-28
Author(s):  
Vyacheslav A. Melkiy ◽  
Daniil V. Dolgopolov ◽  
Alexey A. Verkhoturov

The purpose of this research is the study of possibilities of practical use of multi-zone satellite images for implementation of geotechnical monitoring of pipeline transport facilities during floodings. Modern methods and approaches are required for monitoring extended objects and analyzing large amount of remote sensing data. Such methods can be applied for studying of spectral characteristics of the Earth's surface obtained using space systems, collected in databases using geoinformation technologies (GIS). Use of special indexes and technologies for automated interpretation of multi-zone satellite images allows obtaining and analyzing information about state of pipeline systems at time of flooding. Research showed that Sentinel-2 satellite data makes it possible for fairly correctly determine of flood situation by image indexed with using of Normalized Difference Water Index (NDWI) and highlight areas and objects flooded of water.


2021 ◽  
Vol 13 (8) ◽  
pp. 1505
Author(s):  
Klaudia Kryniecka ◽  
Artur Magnuszewski

The lower Vistula River was regulated in the years 1856–1878, at a distance of 718–939 km. The regulation plan did not take into consideration the large transport of the bed load. The channel was shaped using simplified geometry—too wide for the low flow and overly straight for the stabilization of the sandbar movement. The hydraulic parameters of the lower Vistula River show high velocities of flow and high shear stress. The movement of the alternate sandbars can be traced on the optical satellite images of Sentinel-2. In this study, a method of sandbar detection through the remote sensing indices, Sentinel Water Mask (SWM) and Automated Water Extraction Index no shadow (AWEInsh), and the manual delineation with visual interpretation (MD) was used on satellite images of the lower Vistula River, recorded at the time of low flows (20 August 2015, 4 September 2016, 30 July 2017, 20 September 2018, and 29 August 2019). The comparison of 32 alternate sandbar areas obtained by SWM, AWEInsh, and MD manual delineation methods on the Sentinel-2 images, recorded on 20 August 2015, was performed by the statistical analysis of the interclass correlation coefficient (ICC). The distance of the shift in the analyzed time intervals between the image registration dates depends on the value of the mean discharge (MQ). The period from 30 July 2017 to 20 September 2018 was wet (MQ = 1140 m3 × s−1) and created conditions for the largest average distance of the alternate sandbar shift, from 509 to 548 m. The velocity of movement, calculated as an average shift for one day, was between 1.2 and 1.3 m × day−1. The smallest shift of alternate sandbars was characteristic of the low flow period from 20 August 2015 to 4 September 2016 (MQ = 306 m3 × s−1), from 279 to 310 m, with an average velocity from 0.7 to 0.8 m × day−1.


2017 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Clement Kwang ◽  
Edward Matthew Osei Jnr ◽  
Adwoa Sarpong Amoah

Remote sensing data are most often used in water bodies’ extraction studies and the type of remote sensing data used also play a crucial role on the accuracy of the extracted water features. The performance of the proposed water indexes among the various satellite images is not well documented in literature. The proposed water indexes were initially developed with a particular type of data and with advancement and introduction of new satellite images especially Landsat 8 and Sentinel, therefore the need to test the level of performance of these water indexes as new image datasets emerged. Landsat 8 and Sentinel 2A image of part Volta River was used. The water indexes were performed and then ISODATA unsupervised classification was done. The overall accuracy and kappa coefficient values range from 98.0% to 99.8% and 0.94 to 0.98 respectively. Most of water bodies enhancement indexes work better on Sentinel 2A than on Landsat 8. Among the Landsat based water bodies enhancement ISODATA unsupervised classification, the modified normalized water difference index (MNDWI) and normalized water difference index (NDWI) were the best classifier while for Sentinel 2A, the MNDWI and the automatic water extraction index (AWEI_nsh) were the optimal classifier. The least performed classifier for both Landsat 8 and Sentinel 2A was the automatic water extraction index (AWEI_sh). The modified normalized water difference index (MNDWI) has proved to be the universal water bodies enhancement index because of its performance on both the Landsat 8 and Sentinel 2A image.


2017 ◽  
Author(s):  
Andreas Kääb ◽  
Bas Altena ◽  
Joseph Mascaro

Abstract. Satellite measurements of coseismic displacements are typically based on Synthetic Aperture Radar (SAR) interferometry or amplitude tracking, or based on optical data such as from Landsat, Sentinel-2, SPOT, ASTER, very-high resolution satellites, or airphotos. Here, we evaluate a new class of optical satellite images for this purpose – data from cubesats. More specific, we investigate the PlanetScope cubesat constellation for horizontal surface displacements by the 14 November 2016 Mw7.8 Kaikoura, New Zealand, earthquake. Single PlanetScope scenes are 2–4 m resolution visible and near-infrared frame images of approximately 20–30 km × 9–15 km in size, acquired in continuous sequence along an orbit of approximately 375–475 km height. From single scenes or mosaics from before and after the earthquake we observe surface displacements of up to almost 10 m and estimate a matching accuracy from PlanetScope data of up to ±0.2 pixels (~ ±0.6 m). This accuracy, the daily revisit anticipated for the PlanetScope constellation for the entire land surface of Earth, and a number of other features, together offer new possibilities for investigating coseismic and other Earth surface displacements and managing related hazards and disasters, and complement existing SAR and optical methods. For comparison and for a better regional overview we also match the coseismic displacements by the 2016 Kaikoura earthquake using Landsat8 and Sentinel-2 data.


Author(s):  
Viacheslav V. Krylenko ◽  
◽  
Marina V. Krylenko ◽  
Alexander A. Aleynikov ◽  
◽  
...  

The study of the relief of large coastal accumulative forms, based on modern technologies, is rele-vant for solving many applied problems. Coastal and underwater bars, shoals, banks are characteristic elements of large coastal accumulative forms’ geosystems. Previously existing methods of relief re-searches, especially underwater, were labor-intensive and expensive. Accordingly, the development and implementation of new methods of geographical research are necessary. The Dolgaya Spit, includ-ing its underwater shoal and the Elenin Bank, is one of the largest accumulative forms of the Sea of Azov. The purpose of our work was to obtain new information on the relief structure and the shoreline dynamics of the Dolgaya Spit based on the use of new research methods. Digital models of surface and underwater relief were built on the basis of processing Sentinel-2 satellite images and data from unmanned aerial photography. The subsequent analysis allowed identify regularities that reflect the current and previous hydro-lithodynamic conditions that determined the transformation of the Dolgaya Spit during its evolution. The fulfilled studies confirmed the possibility of successful use of modern remote methods for studying the relief of coastal accumulative forms.


Author(s):  
M. Moradi ◽  
M. Sahebi ◽  
M. Shokri

Water is one of the most important resources that essential need for human life. Due to population growth and increasing need of human to water, proper management of water resources will be one of the serious challenges of next decades. Remote sensing data is the best way to the management of water resources due time and cost effectiveness over a greater range of temporal and spatial scales. Between many kinds of satellite data, from SAR to optic or from high resolution to low resolution, Landsat imagery is more interesting data for water detection and management of earth surface water. Landsat8 OLI/TIRS is the newest version of Landsat satellite series. In this paper, we investigated the full spectral potential of Landsat8 for water detection. It is developed many kinds of methods for this purpose that index based methods have some advantages than other methods. Pervious indices just use a limited number of spectral band. In this paper, Modified Optimization Water Index (MOWI) defined by consideration of a linear combination of bands that each coefficient of bands calculated by particle swarm algorithm. The result shows that modified optimization water index (MOWI) has a proper performance on different condition like cloud, cloud shadow and mountain shadow.


Author(s):  
Trinh Le Hung

The classification of urban land cover/land use is a difficult task due to the complexity in the structure of the urban surface. This paper presents the method of combining of Sentinel 2 MSI and Landsat 8 multi-resolution satellite image data for urban bare land classification based on NDBaI index. Two images of Sentinel 2 and Landsat 8 acquired closely together, were used to calculate the NDBaI index, in which sortware infrared band (band 11) of Sentinel 2 MSI image and thermal infrared band (band 10) of Landsat 8 image were used to improve the spatial resolution of NDBaI index. The results obtained from two experimental areas showed that, the total accuracy of classifying bare land from the NDBaI index which calculated by the proposed method increased by about 6% compared to the method using the NDBaI index, which is calculated using only Landsat 8 data. The results obtained in this study contribute to improving the efficiency of using free remote sensing data in urban land cover/land use classification.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 68
Author(s):  
Sarah A. Lewis ◽  
Peter R. Robichaud ◽  
Andrew T. Hudak ◽  
Eva K. Strand ◽  
Jan U. H. Eitel ◽  
...  

As wildland fires amplify in size in many regions in the western USA, land and water managers are increasingly concerned about the deleterious effects on drinking water supplies. Consequences of severe wildfires include disturbed soils and areas of thick ash cover, which raises the concern of the risk of water contamination via ash. The persistence of ash cover and depth were monitored for up to 90 days post-fire at nearly 100 plots distributed between two wildfires in Idaho and Washington, USA. Our goal was to determine the most ‘cost’ effective, operational method of mapping post-wildfire ash cover in terms of financial, data volume, time, and processing costs. Field measurements were coupled with multi-platform satellite and aerial imagery collected during the same time span. The image types spanned the spatial resolution of 30 m to sub-meter (Landsat-8, Sentinel-2, WorldView-2, and a drone), while the spectral resolution spanned visible through SWIR (short-wave infrared) bands, and they were all collected at various time scales. We that found several common vegetation and post-fire spectral indices were correlated with ash cover (r = 0.6–0.85); however, the blue normalized difference vegetation index (BNDVI) with monthly Sentinel-2 imagery was especially well-suited for monitoring the change in ash cover during its ephemeral period. A map of the ash cover can be used to estimate the ash load, which can then be used as an input into a hydrologic model predicting ash transport and fate, helping to ultimately improve our ability to predict impacts on downstream water resources.


Sign in / Sign up

Export Citation Format

Share Document