scholarly journals Ultimate strength evaluation of multi-stage cold forming technique for manufacture of thin-walled vessels

2020 ◽  
Vol 13 (2) ◽  
pp. 123-133
Author(s):  
A.V. Kazantsev ◽  
I.E. Keller
2021 ◽  
pp. 48-60
Author(s):  
I. Keller ◽  
A. Kazantsev ◽  
A. Adamov ◽  
D. Petukhov ◽  
V. Trofimov ◽  
...  

Author(s):  
Hiroaki Ogawa ◽  
Tomoki Takami ◽  
Akira Tatsumi ◽  
Yoshiteru Tanaka ◽  
Shinichi Hirakawa ◽  
...  

In this study, FE modeling method for the buckling/ultimate strength analysis of a continuous stiffened panel under combined shear and thrust is proposed. In order to validate the proposed method, shear buckling collapse tests of a stiffened panel and FEM analysis are carried out. As the result of these, it is confirmed that the buckling collapse behavior and the ultimate strength estimated by the proposed method are in good agreement with the test results.


2017 ◽  
Vol 11 (1) ◽  
pp. 244-257 ◽  
Author(s):  
Xingyou Yao

Background: Cold-formed steel structural sections used in the walls of residential buildings and agricultural facilities are commonly C-shaped sections with web holes. These holes located in the web of sections can alter the elastic stiffness and the ultimate strength of a structural member. The objective of this paper is to study the buckling mode and load-carrying capacity of cold-formed thin-walled steel column with slotted web holes. Methods: Compression tests were conducted on 26 intermediate length columns with and without holes. The tested compressive members included four different kinds of holes. For each specimen, a shell finite element Eigen-buckling analysis and nonlinear analysis were also conducted. The influence of the slotted web hole on local and distortional buckling response had also been studied. The comparison on ultimate strength between test results and calculated results using Chinese cold-formed steel specification GB50018-2002, North American cold-formed steel specification AISI S100-2016, and nonlinear Finite Element method was made. Result: Test results showed that the distortional buckling occurred for intermediate columns with slotted holes and the ultimate strength of columns with holes was less than that of columns without holes. The ultimate strength of columns decreased with the increase in transverse width of hole in the cross-section of member. The Finite element analysis results showed that the web holes could influence on the elastic buckling stress of columns. The shell finite element could be used to model the buckling modes and analysis the ultimate strength of members with slotted web holes. The calculated ultimate strength shows that results predicted with AISI S100-2016 and analyzed using finite element method are close to test results. The calculated results using Chinese code are higher than the test results because Chinese code has no provision to calculate the ultimate strength of members with slotted web holes. Conclusion: The calculated method for cold-formed thin-walled steel columns with slotted web holes are proposed based on effective width method in Chinese code. The results calculated using the proposed method show good agreement with test results and can be used in engineering design for some specific cold-formed steel columns with slotted web holes studied in this paper.


1985 ◽  
pp. 25-35
Author(s):  
Hiroshi NAKAI ◽  
Toshiyvki KITADA ◽  
Toshihiro MIKI

Author(s):  
Siming Yuan ◽  
Qiang Chen

Titanium alloys are widely used in naval ships due to its high strength, low density, no magnetism, corrosion resistance and so on. However, the material nonlinearity brings new challenges to the ultimate strength evaluation on the Titanium structure. This work is to evaluate the ultimate strength for a stiffened titanium cylinder with consideration of material nonlinearity by numerical analysis and scaled model experiment. Firstly, a series of titanium alloy stiffened cylinder pressure hulls are analyzed for their ultimate strength by non-linear Finite Element Method (FEM). Secondly, model tests are carried out for the above titanium cylinders to obtain their ultimate carrying capacity. Thirdly, the good agreement between experiment and numerical results verify that the numerical simulation method is suitable for ultimate strength evaluation. Finally, some influential factors on the ultimate capacity of the stiffened titanium cylinder are investigated, including stiffeners arrangement, thickness of cylinder hulls, inside diameter. The research work can map the limitations of the current rules and to support the development of ultimate strength assessment guidelines for titanium cylinder pressure hulls.


Author(s):  
Keisuke Minagawa ◽  
Satoshi Fujita ◽  
Seiji Kitamura ◽  
Shigeki Okamura

This paper describes the dynamic strength evaluation of piping installed in nuclear power plants from a viewpoint of energy balance. Mechanical structures installed in nuclear power plants such as piping and equipment are usually designed statically in elastic region. Although these mechanical structures have sufficient seismic safety margin, comprehending the ultimate strength is very important in order to improve the seismic safety reliability in unexpected severe earthquakes. In this study, ultimate strength of a simple single-degree-of-freedom model is investigated from a viewpoint of energy balance equation that is one of valid methods for structural calculation. The investigation is implemented by forced vibration experiment. In the experiment, colored random wave having predominant frequency that is similar to natural frequency of the experimental model is input. Stainless steel and carbon steel are selected as material of experimental model. Excitation is continued until the experimental model is damaged, and is carried out with various input levels. As a result of the experiment, it is confirmed that input energy for failure increase with an increase of time for failure. Additionally it is confirmed that input energy for failure depend on the material.


1995 ◽  
pp. 89-99
Author(s):  
Hiroshi Nakai ◽  
Toshiyuki Kitada ◽  
Masashi Kunihiro ◽  
Yoshio Maegawa ◽  
Noburu Kawauchi

2012 ◽  
Vol 457-458 ◽  
pp. 1219-1222 ◽  
Author(s):  
Yu Zhu ◽  
Min Wan ◽  
Ying Ke Zhou ◽  
Qing Hai Liu ◽  
Nan Song Zheng ◽  
...  

Hydrodynamic deep drawing (HDD) is an effective method for manufacturing complicated and thin-walled parts. Aiming at the forming process of the stainless steel part with 0.4 mm thick and complex stepped geometries, the technology scheme of multi-stage HDD assisted by conventional deep drawing (CDD) is proposed in consideration of wrinkling and destabilization in the unsupported region of the conical wall, and finite element models are built. As a key process parameter, pre-forming depth on the quality of the parts is explored with assistance of numerical simulations and verification experiments. Furthermore, the failure modes, including wrinkling and fracture during forming process are discussed; meanwhile, the optimum pre-forming depth is realized. The results indicate that the technological method is proven to be feasible for integral forming of thin-walled parts with a large drawing ratio and stepped geometries; moreover, the parts with uniform thickness distribution and high quality are successfully formed by adopting optimum pre-forming depth.


Author(s):  
Kinya Ishibashi ◽  
Toshifumi Ikemoto ◽  
Akira Tatsumi ◽  
Masahiko Fujikubo

Sign in / Sign up

Export Citation Format

Share Document