scholarly journals Research on Next Generation Fiber Optical Amplifiers and Their Evaluation in Dense Communication Systems

2021 ◽  
Author(s):  
Lilita Ģēģere

In recent years, the information technology sector has developed rapidly and there has been a rapid increase in the amount of information transmitted. The demand for larger telecommunication network capacities is growing, therefore it is necessary to increase the number of channels and transmission speed in wavelength division multiplexed transmission systems. Various optical amplifiers can be used to compensate for the attenuation of the accumulated signal (over a wide wavelength range). The Doctoral Thesis did research on the use of EDFA, Raman, FOPA and combined optical amplifiers in wavelength division multiplexing systems. In the work, special emphasis is placed on erbium and ytterbium alloy fibers with the study of computer modeling of optical amplifiers in cladding pumping technology.

2016 ◽  
Vol 25 (02) ◽  
pp. 1650023 ◽  
Author(s):  
Hassan Pakarzadeh ◽  
Mostafa Taghizadeh ◽  
Mohsen Hatami

A photonic crystal fiber (PCF) with a zero-dispersion wavelength (ZDW) in the telecommunication region is designed and an ultra-broadband fiber optical parametric amplifier (FOPA) based on such PCF is simulated. Results show that the PCF-based FOPA exhibits much higher gain with a very broad bandwidth (covering O- to U-band) in comparison with the highly nonlinear fiber (HNLF)-based FOPA. Also, the required fiber length and the input pump power are reduced for the PCF-based FOPA. The obtained results show the great potential of the PCF-based OPA for the telecommunication applications, e.g. amplification of wavelength-division multiplexing (WDM) signals.


Author(s):  
S. Semmalar ◽  
S. Malarkkan

Proposed the EDFA and EYCDFA power booster (Erbium Doped Fiber Amplifier- Erbium ytterbium co doped fiber amplifier) with quad pumping for high speed and multi wavelength services in an optical communication. The proposed EDFA and EYCDFA power booster with WDM(Wavelength division multiplexing) simulated by dual forward and Backward pumping, Dual-backward pumping, Tri-single forward and dual backward pumping and Quadsingle forward and tri-backward pumping with respect to Pump power and fiber Length. The parameters Input Optical power, Output Optical power, Forward Signal power, Backward Signal power measured and determined the speed of transmission in all types of pumping methods. From that the proposed EDFA- ans EYCDFA power booster with WDM quad pumping is the best suitable for secured high speed optical telecommunication systems. The results shown in Quad pumping Output optical power is maximum 25.2dB and optimum spectral forward Signal power is 30.5dBm and very less spectral optical backward signal power of -25.4dBm with Length 5m


2018 ◽  
Vol 15 (2) ◽  
pp. 88
Author(s):  
Roby Ikhsan ◽  
Romi Fadli Syahputra ◽  
Saktioto Saktioto

The discovery of optical fiber cause widespread revolution of communication system. Optical fiber communication has excellency on data transmission speed, security, flexibility, and broadly bandwidth. The applying of WDM network can broaden the bandwidth so that the transmission performance becomes more splendid. Although some factors such as dispersion, attenuation, and scattering can hinder the performance of fiber optic on sending data. Moreover dispersion can wreck data and spread pulse as it travels alongs fiber so that causing interference. There is some methods  of dispersion compensation. In this paper, Fiber Raman Amplifier is used on WDM network to strengthen signal which is sent to detector. This research utilize simulation approachment  with various bandwidth and length fiber. The results show lowest BER value and highest Q-factor at bandwidth frequency of 30 GHz and fiber length of 20 km.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
◽  
Chakresh Kumar

AbstractIn this paper we have study the performance of different optical amplifiers (Erbium doped amplifier (EDFA), RAMAN amplifier, and semiconductor optical amplifier (SOA)) for 80 channels wavelength division multiplexing (WDM) system with the data rate at 10 Gbps data rate for the transmission distance of 280 km After getting the results of these amplifiers the performance of these has to be compared The Q-factor values achieved better in EDFA as compared to SOA and RAMAN. While the BER getting good in SOA as compared with other amplifiers but in EDFA after 200 km it goes saturated, the Power achieved at the power estimator is getting better in EDFA optical amplifier while in other amplifier it achieved negative. At the end it is also study the Power with frequency in THz and the Eye Diagram of such amplifiers results.


Author(s):  
Ahmed Zaki Rashed

<p>Fiber Raman amplifiers in ultra wide wavelength division multiplexing (UW-WDM) systems have recently received much more attention because of their greatly extended bandwidth and distributed amplification with the installed fiber as gain medium. It has been shown that the bandwidth of the amplifier can be further increased and gain spectrum can be tailored by using pumping with multiple wavelengths. Wide gain of the amplifier is considered where two sets of pumps N<sub>R</sub> {5,10} are investigated. The gain coefficient is cast under polynomial forms. The pumping wavelength l<sub>R</sub> is over the range 1.40 £ l<sub>R</sub>, mm £ 1.44 and the channel wavelength l<sub>s</sub> is over the range 1.45 £ l<sub>s</sub>, mm £ 1.65. Two multiplexing techniques are processed in long-haul transmission cables where number of channels is up to 10000 in ultra-wide wavelength division multiplexing (UW-WDM) with number of links up to 480. The problem is investigated over wide ranges of affecting sets of parameters.</p>


Sign in / Sign up

Export Citation Format

Share Document