scholarly journals Methodology For Determining Reliable Traffic Parameters For Current Analysis Of Performance Of Motorways And Expressways

2019 ◽  
Vol 14 (1) ◽  
pp. 104-123
Author(s):  
Malwina Spławińska

In this paper, the results of analyses concerning selected traffic characteristics typical for Polish motorways and expressways are presented. The input data were collected automatically by stations located on various highways. In the first place, with the use of the coefficient of variability, periods with the lowest traffic volume variability in the year and the day were determined. On this basis, the most favourable time scope of random measurements was determined to allow reliable estimation of traffic parameters for road performance analyses. Then, based on model relationships between the characteristics of traffic volume variability over time and constant volume (regression relationships, a model of Artificial Neural Networks), correction factors were developed enabling direct conversion of the obtained measurement results into Design Hourly Volume. In addition, the rules for determining the share of heavy vehicles meeting the conditions at peak hours of the year were developed. The presented approach is in line with the current research trend on a global scale and allows for improving the accuracy of estimating Design Hourly Volume by 20 per cent concerning the method currently recommended in Poland.

2021 ◽  
Vol 13 (12) ◽  
pp. 2329
Author(s):  
Elżbieta Macioszek ◽  
Agata Kurek

Continuous, automatic measurements of road traffic volume allow the obtaining of information on daily, weekly or seasonal fluctuations in road traffic volume. They are the basis for calculating the annual average daily traffic volume, obtaining information about the relevant traffic volume, or calculating indicators for converting traffic volume from short-term measurements to average daily traffic volume. The covid-19 pandemic has contributed to extensive social and economic anomalies worldwide. In addition to the health consequences, the impact on travel behavior on the transport network was also sudden, extensive, and unpredictable. Changes in the transport behavior resulted in different values of traffic volume on the road and street network than before. The article presents road traffic volume analysis in the city before and during the restrictions related to covid-19. Selected traffic characteristics were compared for 2019 and 2020. This analysis made it possible to characterize the daily, weekly and annual variability of traffic volume in 2019 and 2020. Moreover, the article attempts to estimate daily traffic patterns at particular stages of the pandemic. These types of patterns were also constructed for the weeks in 2019 corresponding to these stages of the pandemic. Daily traffic volume distributions in 2020 were compared with the corresponding ones in 2019. The obtained results may be useful in terms of planning operational and strategic activities in the field of traffic management in the city and management in subsequent stages of a pandemic or subsequent pandemics.


2018 ◽  
Vol 10 (8) ◽  
pp. 2754
Author(s):  
Heikki Liimatainen ◽  
Phil Greening ◽  
Pratyush Dadhich ◽  
Anna Keyes

The potential effects of implementing longer and heavier vehicles (LHVs) in road freight transport have been studied in various countries, nationally and internationally, in Europe. These studies have focused on the implementation of LHVs on certain types of commodities and the experience from countries like Finland and Sweden, which have a long tradition of using LHVs, and in which LHVs used for all types of commodities have not been widely utilised. This study aimed to assess the impacts of long and heavy vehicles on various commodities in the United Kingdom based on the Finnish experiences in order to estimate the possible savings in road freight transport vehicle kilometres, costs, and CO2 emissions in the United Kingdom if LHVs would be introduced and used similarly to in Finland in the transport of various commodities. The study shows that the savings of introducing longer and heavier vehicles in the United Kingdom would be 1.5–2.6 billion vehicle kms, £0.7–1.5 billion in transport costs, and 0.35–0.72 Mt in CO2 emissions. These findings are well in line with previous findings in other countries. The results confirm that considerable savings in traffic volume and emissions can be achieved and the savings are very likely to outweigh possible effects of modal shift from rail to road.


Author(s):  
C. C. Osadebe ◽  
H. A. Quadri

The prevalence of flexible pavement deterioration in the country has been adduced largely by highway researchers to trucks or heavy vehicles carrying much in excess of permitted legal limits. This study investigated levels of deterioration of Abuja-Kaduna-Kano road (Northern region) and Port Harcourt-Enugu road (Southern region) caused by heavy vehicles through a 14 day traffic counts conducted at 5 strategic points each in the Northern and Southern regions. Traffic data generated were analyzed with AASHTO Design Guidelines (1993) to evaluate Equivalent Single Axle Loads (ESALs) and Vehicle Damage effects on the road. The Traffic Volume, Average Daily Traffic (ADT), and Heavy Vehicle per day (HV/day) were estimated to be 2,063,977; 147,427; and 12,246 respectively in the Northern region, while in the Southern region they were estimated to be 750,381; 53,670; and 20,951 respectively. Motorcycles, Passenger cars, Mini-buses/Pick-ups, and Heavy vehicles constitute 18.7%, 49.7%, 23.3% and 8.31% of the total traffic volume respectively in the Northern region while in the South they constitute 4.6%, 30.1%, 26.2% and 39.1% respectively. ESALs were estimated according to AASHTO Design Guidelines in the Northern and Southern regions as 547,730 and 836,208 respectively. An average Load Equivalency Factors (LEFs) of 3.43 and 3.02 were estimated for each heavy vehicle plying the Northern and Southern roads respectively and this could explain some failures (alligator cracks, potholes, depressions, linear or longitudinal cracks along the centre line amongst others) inherent on the road.


2015 ◽  
pp. 1540-1566
Author(s):  
Sara Moridpour

Heavy vehicles have substantial impact on traffic flow particularly during heavy traffic conditions. Large amount of heavy vehicle lane changing manoeuvres may increase the number of traffic accidents and therefore reduce the freeway safety. Improving road capacity and enhancing traffic safety on freeways has been the motivation to establish heavy vehicle lane restriction strategies to reduce the interaction between heavy vehicles and passenger cars. In previous studies, different heavy vehicle lane restriction strategies have been evaluated using microscopic traffic simulation packages. Microscopic traffic simulation packages generally use a common model to estimate the lane changing of heavy vehicles and passenger cars. The common lane changing models ignore the differences exist in the lane changing behaviour of heavy vehicle and passenger car drivers. An exclusive fuzzy lane changing model for heavy vehicles is developed and presented in this chapter. This fuzzy model can increase the accuracy of simulation models in estimating the macroscopic and microscopic traffic characteristics. The results of this chapter shows that using an exclusive lane changing model for heavy vehicles, results in more reliable evaluation of lane restriction strategies.


2014 ◽  
Vol 49 (4) ◽  
pp. 535-552 ◽  
Author(s):  
Sara Moridpour ◽  
Ehsan Mazloumi ◽  
Mahmoud Mesbah

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Akanksha Saxena ◽  
Nilanjan Chatterjee ◽  
Asha Rajvanshi ◽  
Bilal Habib

Abstract Roads impact wildlife in multiple ways, most conspicuous amongst which are animal-vehicle collisions (AVCs). Mitigation measures to reduce AVCs at the local scale are often centred on species-specific crossing zones and collision hotspots. However, at the road network scale, consideration of interactions among road, species and traffic characteristics influencing AVC occurrence is required to design effective mitigation strategies. We modelled traversability—the probability of an animal successfully crossing a road- across an Indian highway for six large mammal species under different scenarios of road and traffic characteristics. Among the study species, group-living and slow-moving animals had higher AVC probabilities that increased significantly with increasing traffic volume and proportions of heavy vehicles in the traffic flow. The risk of AVC was higher for species that were active near roadside habitat during peak traffic hours. Our approach could help identify roads that pose potential mortality risks to animals using empirical data on animal and traffic characteristics. Results suggest that regulating traffic volume and heterogeneity on existing road stretches could potentially reduce animal mortality and barrier effect. Mitigation on roads expected to carry heavy traffic loads passing through ecologically-sensitive areas should be prioritised to ensure traversability for animal communities.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 640
Author(s):  
Gabor Soos ◽  
Daniel Ficzere ◽  
Pal Varga

To analyze next-generation mobile networks properly, there is a need to define key performance indicators (KPIs). Testing signaling only or just partial domains of the network have been replaced with end-to-end testing methodologies. With the appearing of machine-to-machine (M2M) applications, this question became even harder, since there is no direct user feedback. Quality of experience cannot be measured accurately in M2M applications, even if the network operates correctly and without failures. There are dozens of new—but theoretical—use-cases for 5G; however, these are not tested on a live network. The modeling methodology used throughout the paper follows the steps of observation, analysis, model creation, implementation, and verification. The first part of the paper examines the three application-types: enhanced mobile broadband (eMBB), critical Internet of Things (cIoT), and mass Internet of Things (mIoT). Afterwards, we introduce the main traffic characteristics based on current mobile networks’ traffic patterns and measurements. Considering the measurement results, we introduce a methodology and define traffic models for the simulation of different application-types. To validate these models, we compare the generated artificial traffic with real traffic patterns. In the second part of the paper, we examine what the main effects of these traffic patterns on a domestic 5G test-network are. Finally, we suggest some considerations on the possible main impacts regarding 5G network design.


Author(s):  
Sara Moridpour

Heavy vehicles have substantial impact on traffic flow particularly during heavy traffic conditions. Large amount of heavy vehicle lane changing manoeuvres may increase the number of traffic accidents and therefore reduce the freeway safety. Improving road capacity and enhancing traffic safety on freeways has been the motivation to establish heavy vehicle lane restriction strategies to reduce the interaction between heavy vehicles and passenger cars. In previous studies, different heavy vehicle lane restriction strategies have been evaluated using microscopic traffic simulation packages. Microscopic traffic simulation packages generally use a common model to estimate the lane changing of heavy vehicles and passenger cars. The common lane changing models ignore the differences exist in the lane changing behaviour of heavy vehicle and passenger car drivers. An exclusive fuzzy lane changing model for heavy vehicles is developed and presented in this chapter. This fuzzy model can increase the accuracy of simulation models in estimating the macroscopic and microscopic traffic characteristics. The results of this chapter shows that using an exclusive lane changing model for heavy vehicles, results in more reliable evaluation of lane restriction strategies.


2021 ◽  
Author(s):  
Sophie L. Baartman ◽  
Maria Elena Popa ◽  
Maarten Krol ◽  
Thomas Röckmann

<p>Carbonyl sulfide (COS) is the most abundant sulfur-containing trace gas in the atmosphere, with an average mixing ratio of 500 parts per trillion (ppt). It has a relatively long lifetime of about 2 years, which permits it to travel into the stratosphere. There, it likely plays an important role in the formation of stratospheric sulfur aerosols (SSA), which have a cooling effect on the Earth’s climate. Furthermore, during photosynthetic uptake by plants, COS follows essentially the same pathway as CO<sub>2</sub>, and therefore COS could be used to estimate gross primary production (GPP). Unfortunately, significant uncertainties still exist in the sources, sinks and global cycling of COS, which need to be overcome. Isotopic measurements of COS could be a promising tool for constraining the COS budget, as well as for investigating its role in the formation of stratospheric sulfur aerosols.</p><p>Within the framework of the COS-OCS project, we developed a new measurement system at Utrecht University, that can measure d<sup>33</sup>S and d<sup>34</sup>S from COS from small air samples of 2 to 5 L. The aim of the project is to perform a global-scale characterization of COS isotopes by measuring seasonal, latitudinal and altitudinal variations in the troposphere and stratosphere. We will present the newest results from a series of semi-continuous outside air measurements in the Netherlands during the fall and early winter of 2020/2021. The measurement results are interpreted with the help of backward trajectory analyses to characterize the influence of different wind directions and air origins on the COS concentration and isotopic composition.</p>


2018 ◽  
Vol 34 ◽  
pp. 02024
Author(s):  
F.S. Sulaiman ◽  
N. Darus ◽  
N. Mashros ◽  
Z. Haron ◽  
K. Yahya

Vehicles passing by on roadways in residential areas may produce unpleasant traffic noise that affects the residents. This paper presents the traffic noise assessment of three selected residential areas located in Skudai, Johor. The objectives of this study are to evaluate traffic characteristics at selected residential areas, determine related noise indices, and assess impact of traffic noise. Traffic characteristics such as daily traffic volume and vehicle speed were evaluated using automatic traffic counter (ATC). Meanwhile, noise indices like equivalent continuous sound pressure level (LAeq), noise level exceeded 10% (L10) and 90% (L90) of measurement time were determined using sound level meter (SLM). Besides that, traffic noise index (TNI) and noise pollution level (LNP) were calculated based on the measured noise indices. The results showed an increase in noise level of 60 to 70 dBA maximum due to increase in traffic volume. There was also a significant change in noise level of more than 70 dBA even though average vehicle speed did not vary significantly. Nevertheless, LAeq, TNI, and LNP values for all sites during daytime were lower than the maximum recommended levels. Thus, residents in the three studied areas were not affected in terms of quality of life and health.


Sign in / Sign up

Export Citation Format

Share Document