Isotopic Measurements of Carbonyl Sulfide: The First Results from Semi-continuous Outside Air Measurements in the Netherlands

Author(s):  
Sophie L. Baartman ◽  
Maria Elena Popa ◽  
Maarten Krol ◽  
Thomas Röckmann

<p>Carbonyl sulfide (COS) is the most abundant sulfur-containing trace gas in the atmosphere, with an average mixing ratio of 500 parts per trillion (ppt). It has a relatively long lifetime of about 2 years, which permits it to travel into the stratosphere. There, it likely plays an important role in the formation of stratospheric sulfur aerosols (SSA), which have a cooling effect on the Earth’s climate. Furthermore, during photosynthetic uptake by plants, COS follows essentially the same pathway as CO<sub>2</sub>, and therefore COS could be used to estimate gross primary production (GPP). Unfortunately, significant uncertainties still exist in the sources, sinks and global cycling of COS, which need to be overcome. Isotopic measurements of COS could be a promising tool for constraining the COS budget, as well as for investigating its role in the formation of stratospheric sulfur aerosols.</p><p>Within the framework of the COS-OCS project, we developed a new measurement system at Utrecht University, that can measure d<sup>33</sup>S and d<sup>34</sup>S from COS from small air samples of 2 to 5 L. The aim of the project is to perform a global-scale characterization of COS isotopes by measuring seasonal, latitudinal and altitudinal variations in the troposphere and stratosphere. We will present the newest results from a series of semi-continuous outside air measurements in the Netherlands during the fall and early winter of 2020/2021. The measurement results are interpreted with the help of backward trajectory analyses to characterize the influence of different wind directions and air origins on the COS concentration and isotopic composition.</p>

2020 ◽  
Author(s):  
Sophie Baartman ◽  
Elena Popa ◽  
Maarten Krol ◽  
Thomas Röckmann

<p>Carbonyl sulfide (COS) is the most abundant sulfur-containing trace gas in the atmosphere, with an average mixing ratio of 500 parts per trillion (ppt). It has a relatively long lifetime of about 2 years, which permits it to travel into the stratosphere. There, it likely plays an important role in the formation of stratospheric sulfur aerosols (SSA), which have a cooling effect on the Earth’s climate. Furthermore, during photosynthetic uptake by plants, COS follows essentially the same pathway as CO<sub>2</sub>, and therefore COS could be used to estimate gross primary production (GPP). Unfortunately, significant uncertainties still exist in the sources, sinks and global cycling of COS, which need to be overcome. Isotopic measurements of COS could be a promising tool for constraining the COS budget, as well as for investigating its role in the formation of stratospheric sulfur aerosols.</p><p>Within the framework of the COS-OCS project, we developed a new pre-concentration and measurement system at Utrecht University, that can measure d<sup>33</sup>S and d<sup>34</sup>S from COS from 2 to 5 L air samples, with a current precision of about 5‰ and 2‰ for d<sup>33</sup>S and d<sup>34</sup>S, respectively. The aim of the project is to perform a global-scale characterization of COS isotopes by measuring seasonal, latitudinal and altitudinal variations in the troposphere and stratosphere. Here, I will present the details of the new measurement system and results from various atmospheric samples.</p>


2021 ◽  
Vol 1 ◽  
pp. 105
Author(s):  
Sophie L. Baartman ◽  
Maarten C. Krol ◽  
Thomas Röckmann ◽  
Shohei Hattori ◽  
Kazuki Kamezaki ◽  
...  

A new system was developed for measuring sulfur isotopes Δ33S and Δ34S from atmospheric carbonyl sulfide (COS or OCS) on small air samples of several liters, using a pre-concentration and gas chromatography – isotope ratio mass spectrometry (GC-IRMS) method. Measurements of COS isotopes provide a tool for quantifying the COS budget, which will help towards better understanding climate feedback mechanisms. For a 4 liter sample at ambient COS mixing ratio, ~500 parts per trillion (ppt), we obtain a reproducibility error of 2.1 ‰ for Δ33S and 0.4 ‰ for Δ34S. After applying corrections, the uncertainty for an individual ambient air sample measurement is 3.3 ‰ for Δ33S and 0.9 ‰ for Δ34S. The ability to measure small samples allows application to a global-scale sampling program with limited logistical effort. To illustrate the application of this newly developed system, we present a timeseries of ambient air measurements, during the fall and winter of 2020 and 2021 in Utrecht, the Netherlands. The observed background values were Δ33S = 1.0 ± 3.4 ‰ and Δ34S = 15.5 ± 0.8 ‰ (VCDT). The maximum observed COS mixing ratios was 620 ppt, suggesting that the Netherlands receives little COS-containing anthropogenic emissions. We observed a change in COS mixing ratio and sometimes also Δ34S with different air mass origin, as modelled with the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) backward trajectory analyses. An increasing trend of 40 ppt was observed in the COS mixing ratio between fall and winter, which is consistent with the expected seasonal cycle in the Netherlands. Additionally, we present the results from samples taken inside a highway tunnel in Utrecht to characterize vehicle COS emissions and isotopic composition. The vehicle emissions were small, with a COS/CO2 ratio of 0.4 ppt/ppm; the isotopic signatures are depleted relatively to background atmospheric COS.


2021 ◽  
Vol 10 (6) ◽  
pp. 384
Author(s):  
Javier Martínez-López ◽  
Bastian Bertzky ◽  
Simon Willcock ◽  
Marine Robuchon ◽  
María Almagro ◽  
...  

Protected areas (PAs) are a key strategy to reverse global biodiversity declines, but they are under increasing pressure from anthropogenic activities and concomitant effects. Thus, the heterogeneous landscapes within PAs, containing a number of different habitats and ecosystem types, are in various degrees of disturbance. Characterizing habitats and ecosystems within the global protected area network requires large-scale monitoring over long time scales. This study reviews methods for the biophysical characterization of terrestrial PAs at a global scale by means of remote sensing (RS) and provides further recommendations. To this end, we first discuss the importance of taking into account the structural and functional attributes, as well as integrating a broad spectrum of variables, to account for the different ecosystem and habitat types within PAs, considering examples at local and regional scales. We then discuss potential variables, challenges and limitations of existing global environmental stratifications, as well as the biophysical characterization of PAs, and finally offer some recommendations. Computational and interoperability issues are also discussed, as well as the potential of cloud-based platforms linked to earth observations to support large-scale characterization of PAs. Using RS to characterize PAs globally is a crucial approach to help ensure sustainable development, but it requires further work before such studies are able to inform large-scale conservation actions. This study proposes 14 recommendations in order to improve existing initiatives to biophysically characterize PAs at a global scale.


2020 ◽  
Vol 29 (7) ◽  
pp. 1230-1245 ◽  
Author(s):  
Paulo N. Bernardino ◽  
Wanda De Keersmaecker ◽  
Rasmus Fensholt ◽  
Jan Verbesselt ◽  
Ben Somers ◽  
...  

2021 ◽  
Author(s):  
Michael P. Cartwright ◽  
Jeremy J. Harrison ◽  
David P. Moore

<p>Carbonyl sulfide (OCS) is the most abundant sulfur containing gas in the atmosphere and is an important source of stratospheric aerosol. Furthermore, it has been shown that OCS can be used as a proxy for photosynthesis, which is a powerful tool in quantifying global gross primary production. While considerable improvements have been made in our understanding of the location and magnitude of OCS fluxes over the past few decades, recent studies highlight the need for a new satellite dataset to help reduce the uncertainties in current estimations. The Infrared Atmospheric Sounding Interferometer (IASI) instruments on-board the MetOp satellites offer over 14 years of nadir viewing radiance measurements with excellent spatial coverage. Given that there are currently three IASI instruments in operation, there is the potential for a significantly larger OCS dataset than is currently available elsewhere. Retrievals of OCS from these IASI radiances have been made using an adapted version of the University of Leicester IASI Retrieval Scheme (ULIRS). OCS total column amounts are calculated from profiles retrieved on a 31-layer equidistant pressure grid, using an optimal estimation approach for microwindows in the range 2000 – 2100 cm<sup>-1</sup> wavenumbers. Sensitivity of the measurements peak in the mid-troposphere, between 5 – 10 km.</p><p>The outlook of this work is to produce a long-term OCS satellite observational data set that provides fresh insight to the spatial distribution and trend of atmospheric OCS. Here, we present subsets of data in the form of case studies for different geographic regions and time periods.</p>


2010 ◽  
Vol 652 ◽  
pp. 105-110 ◽  
Author(s):  
X.L. Wang ◽  
Thomas Holden ◽  
A.D. Stoica ◽  
K. An ◽  
H.D. Skorpenske ◽  
...  

On Friday June 26, 2009, the neutron beam shutter for the VULCAN diffractometer at the SNS was opened for the first time. Initial measurements to characterize the instrument performance are reported. It is shown that the measurement results are by and large in agreement with design calculations. New research opportunities with VULCAN are discussed.


2016 ◽  
Author(s):  
Bao-Lin Xue ◽  
Qinghua Guo ◽  
Tianyu Hu ◽  
Yongcai Wang ◽  
Shengli Tao ◽  
...  

Abstract. Dynamic global vegetation models are useful tools for the simulation of carbon dynamics on regional and global scales. However, even the most validated models are usually hampered by the poor availability of global biomass data in the model validation, especially on regional/global scales. Here, taking the integrated biosphere simulator model (IBIS) as an example, we evaluated the modeled carbon dynamics, including gross primary production (GPP) and potential above-ground biomass (AGB), on the global scale. The IBIS model was constrained by both in situ GPP and plot-level AGB data collected from the literature. Independent validation showed that IBIS could reproduce GPP and evapotranspiration with acceptable accuracy at site and global levels. On the global scale, the IBIS-simulated total AGB was similar to those obtained in other studies. However, discrepancies were observed between the model-derived and observed spatial patterns of AGB for Amazonian forests. The differences among the AGB spatial patterns were mainly caused by the single-parameter set of the model used. This study showed that different meteorological inputs can also introduce substantial differences in AGB on the global scale. Further analysis showed that this difference is small compared with parameter-induced differences. The conclusions of our research highlight the necessity of considering the heterogeneity of key model physiological parameters in modeling global AGB. The research also shows that to simulate large-scale carbon dynamics, both carbon flux and AGB data are necessary to constrain the model. The main conclusions of our research will help to improve model simulations of global carbon cycles.


2021 ◽  
Vol 28 (1) ◽  
pp. 41-61
Author(s):  
Monika Glimskär ◽  
Helena Backman

Abstract The De Geer family established themselves in Sweden as iron industrialists during the early seventeenth century, but they maintained close contact with the Netherlands. The family built up a prestigious library at Leufstabruk, in northern Uppland. The objects in the Leufsta Music Collection contained a significant amount of music in the form of printed sheet music and manuscripts, which were most likely gathered during the long lifetime of baron Charles De Geer (1720-1778). Compared to the works he collected in his youth in the Netherlands, the printed scores linked to Charles De Geer’s later period in Sweden show a change of taste in both repertoire and collecting behavior. This article deals with the bindings of the sheet music in the Leufsta collection, which give us clues of both De Geer’s acquisition and his approach to his music scores from their purchase to binding, labelling, cataloguing and practical use.


2016 ◽  
Vol 13 (8) ◽  
pp. 2221-2240 ◽  
Author(s):  
Jérôme Ogée ◽  
Joana Sauze ◽  
Jürgen Kesselmeier ◽  
Bernard Genty ◽  
Heidi Van Diest ◽  
...  

Abstract. Estimates of photosynthetic and respiratory fluxes at large scales are needed to improve our predictions of the current and future global CO2 cycle. Carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere and has been proposed as a new tracer of photosynthetic gross primary productivity (GPP), as the uptake of OCS from the atmosphere is dominated by the activity of carbonic anhydrase (CA), an enzyme abundant in leaves that also catalyses CO2 hydration during photosynthesis. However soils also exchange OCS with the atmosphere, which complicates the retrieval of GPP from atmospheric budgets. Indeed soils can take up large amounts of OCS from the atmosphere as soil microorganisms also contain CA, and OCS emissions from soils have been reported in agricultural fields or anoxic soils. To date no mechanistic framework exists to describe this exchange of OCS between soils and the atmosphere, but empirical results, once upscaled to the global scale, indicate that OCS consumption by soils dominates OCS emission and its contribution to the atmospheric budget is large, at about one third of the OCS uptake by vegetation, also with a large uncertainty. Here, we propose a new mechanistic model of the exchange of OCS between soils and the atmosphere that builds on our knowledge of soil CA activity from CO2 oxygen isotopes. In this model the OCS soil budget is described by a first-order reaction–diffusion–production equation, assuming that the hydrolysis of OCS by CA is total and irreversible. Using this model we are able to explain the observed presence of an optimum temperature for soil OCS uptake and show how this optimum can shift to cooler temperatures in the presence of soil OCS emission. Our model can also explain the observed optimum with soil moisture content previously described in the literature as a result of diffusional constraints on OCS hydrolysis. These diffusional constraints are also responsible for the response of OCS uptake to soil weight and depth observed previously. In order to simulate the exact OCS uptake rates and patterns observed on several soils collected from a range of biomes, different CA activities had to be invoked in each soil type, coherent with expected physiological levels of CA in soil microbes and with CA activities derived from CO2 isotope exchange measurements, given the differences in affinity of CA for both trace gases. Our model can be used to help upscale laboratory measurements to the plot or the region. Several suggestions are given for future experiments in order to test the model further and allow a better constraint on the large-scale OCS fluxes from both oxic and anoxic soils.


2014 ◽  
Vol 14 (20) ◽  
pp. 27663-27729 ◽  
Author(s):  
T. Launois ◽  
P. Peylin ◽  
S. Belviso ◽  
B. Poulter

Abstract. Clear analogies between carbonyl sulfide (OCS) and carbon dioxide (CO2) diffusion pathways through leaves have been revealed by experimental studies with plant uptake playing an important role for the atmospheric budget of both species. Here we use atmospheric OCS to evaluate the gross primary production (GPP) of three dynamic global vegetation models (LPJ, NCAR-CLM4 and ORCHIDEE). Vegetation uptake of OCS is modeled as a linear function of GPP and LRU, the ratio of OCS to CO2 deposition velocities to plants. New parameterizations for the non-photosynthetic sinks (oxic soils, atmospheric oxidation) and biogenic sources (oceans and anoxic soils) of OCS are also provided. Despite new large oceanic emissions, global OCS budgets created with each vegetation model show exceeding sinks by several hundreds of Gg S yr−1. An inversion of the surface fluxes (optimization of a global scalar which accounts for flux uncertainties) led to balanced OCS global budgets, as atmospheric measurements suggest, mainly by drastic reduction (−30%) of soil and vegetation uptakes. The amplitude of variations in atmospheric OCS mixing ratios is mainly dictated by the vegetation sink over the Northern Hemisphere. This allows for bias recognition in the GPP representations of the three selected models. Main bias patterns are (i) the terrestrial GPP of ORCHIDEE at high Northern latitudes is currently over-estimated, (ii) the seasonal variations of the GPP are out of phase in the NCAR-CLM4 model, showing a maximum carbon uptake too early in spring in the northernmost ecosystems, (iii) the overall amplitude of the seasonal variations of GPP in NCAR-CLM4 is too small, and (iv) for the LPJ model, the GPP is slightly out of phase for northernmost ecosystems and the respiration fluxes might be too large in summer in the Northern Hemisphere.


Sign in / Sign up

Export Citation Format

Share Document