next generation mobile networks
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 22)

H-INDEX

11
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 26
Author(s):  
Ramraj Dangi ◽  
Praveen Lalwani ◽  
Gaurav Choudhary ◽  
Ilsun You ◽  
Giovanni Pau

In wireless communication, Fifth Generation (5G) Technology is a recent generation of mobile networks. In this paper, evaluations in the field of mobile communication technology are presented. In each evolution, multiple challenges were faced that were captured with the help of next-generation mobile networks. Among all the previously existing mobile networks, 5G provides a high-speed internet facility, anytime, anywhere, for everyone. 5G is slightly different due to its novel features such as interconnecting people, controlling devices, objects, and machines. 5G mobile system will bring diverse levels of performance and capability, which will serve as new user experiences and connect new enterprises. Therefore, it is essential to know where the enterprise can utilize the benefits of 5G. In this research article, it was observed that extensive research and analysis unfolds different aspects, namely, millimeter wave (mmWave), massive multiple-input and multiple-output (Massive-MIMO), small cell, mobile edge computing (MEC), beamforming, different antenna technology, etc. This article’s main aim is to highlight some of the most recent enhancements made towards the 5G mobile system and discuss its future research objectives.


2021 ◽  
Vol 11 (6) ◽  
pp. 7964-7967
Author(s):  
H. H. Alshortan ◽  
A. Alogla ◽  
M. A. H. Eleiwa ◽  
M. I. Khan

In next-generation mobile networks, hundreds of diverse devices aim to be interconnected, posing huge challenges in capacity, coverage, efficiency, reliability, and connectivity. These and other challenges are addressed at Radio Frequency (RF) parts such as several radiating unit antennas, with very fine beamforming capabilities along with the requirements of high gains and minimized size. This work presents an 8×8 Aperture Coupled Microstrip Patch Antenna (AC-MPA) in the form of a planar array modeled for the 28GHz frequency band with high gain and compact size, making it suitable for 5G networks. The antenna is designed using a substrate with overall dimensions of 74.6×85.648×0.107mm3 and relative permittivity of ε0 = 4.3.


2021 ◽  
pp. 1-25
Author(s):  
Daniel Gerbi Duguma ◽  
Jiyoon Kim ◽  
Sangmin Lee ◽  
Nam-Su Jho ◽  
Vishal Sharma ◽  
...  

Author(s):  
Thiago R. Raddo ◽  
Simon Rommel ◽  
Bruno Cimoli ◽  
Chris Vagionas ◽  
Diego Perez-Galacho ◽  
...  

AbstractThe sixth generation (6G) mobile systems will create new markets, services, and industries making possible a plethora of new opportunities and solutions. Commercially successful rollouts will involve scaling enabling technologies, such as cloud radio access networks, virtualization, and artificial intelligence. This paper addresses the principal technologies in the transition towards next generation mobile networks. The convergence of 6G key-performance indicators along with evaluation methodologies and use cases are also addressed. Free-space optics, Terahertz systems, photonic integrated circuits, softwarization, massive multiple-input multiple-output signaling, and multi-core fibers, are among the technologies identified and discussed. Finally, some of these technologies are showcased in an experimental demonstration of a mobile fronthaul system based on millimeter 5G NR OFDM signaling compliant with 3GPP Rel. 15. The signals are generated by a bespoke 5G baseband unit and transmitted through both a 10 km prototype multi-core fiber and 4 m wireless V-band link using a pair of directional 60 GHz antennas with 10° beamwidth. Results shown that the 5G and beyond fronthaul system can successfully transmit signals with both wide bandwidth (up to 800 MHz) and fully centralized signal processing. As a result, this system can support large capacity and accommodate several simultaneous users as a key candidate for next generation mobile networks. Thus, these technologies will be needed for fully integrated, heterogeneous solutions to benefit from hardware commoditization and softwarization. They will ensure the ultimate user experience, while also anticipating the quality-of-service demands that future applications and services will put on 6G networks.


Author(s):  
Weston Mwashita ◽  
Marcel Ohanga Odhiambo

The snowballing of many different electronic gadgets connected to different networks and to the internet is a clear indication that the much-anticipated internet of things (IoT) is fast becoming a reality. It is generally agreed that the next generation mobile networks should offer wireless connection to anything and anyone with a proper enabling device at any time leading to the full realization of IoT. Device-to device (D2D) communication is one technology that the research community believes will aid the implementation of the next generation of mobile networks, specifically 5G. Full roll out of D2D is however being impeded by the resulting interference. This chapter looks at the state-of-the-art research works on interference management technologies proposed for device-to-device communications. A comprehensive analysis of the proposed schemes is given and open challenges and issues that need to be considered by researchers in D2D communication for it to become a key enabler for 5G technology are highlighted and recommendations provided.


Author(s):  
Qingmin Jia ◽  
RenChao Xie ◽  
Tao Huang ◽  
Jiang Liu ◽  
Yunjie Liu

Network slicing has been considered a promising technology in next generation mobile networks (5G), which can create virtual networks and provide customized service on demand. Most existing works on network slicing mainly focus on virtualization technology, and have not considered in-network caching well. However, in-network caching, as the one of the key technologies for information-centric networking (ICN), has been considered as a significant approach in 5G network to cope with the traffic explosion and network challenges. In this article, the authors jointly consider in-network caching combining with network slicing. They propose an efficient caching resource sharing scheme for network slicing in 5G core network, aiming at solving the problem of how to efficiently share the limited physical caching resource of Infrastructure Provider (InP) among multiple network slices. In addition, from the perspective of network slicing, the authors formulate caching resource sharing problem as a non-cooperative game, and propose an iteration algorithm based on caching resource updating to obtain the Nash Equilibrium solution. Simulation results show that the proposed algorithm has good convergence performance, and illustrate the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document