scholarly journals An Overview of Quantum Key Distribution Protocols

2018 ◽  
Vol 21 ◽  
pp. 37-44 ◽  
Author(s):  
Anastasija Trizna ◽  
Andris Ozols

Quantum key distribution (QKD) is the objects of close attention and rapid progress due to the fact that once first quantum computers are available – classical cryptography systems will become partially or completely insecure. The potential threat to today’s information security cannot be neglected, and efficient quantum computing algorithms already exist. Quantum cryptography brings a completely new level of security and is based on quantum physics principles, comparing with the classical systems that rely on hard mathematical problems. The aim of the article is to overview QKD and the most conspicuous and prominent QKD protocols, their workflow and security basement. The article covers 17 QKD protocols and each introduces novel ideas for further QKD system improvement.

2021 ◽  
Vol 13 (2) ◽  
pp. 45-55
Author(s):  
Márton Czermann ◽  
Péter Trócsányi ◽  
Zsolt Kis ◽  
Benedek Kovács ◽  
László Bacsárdi

Nowadays, widely spread encryption methods (e.g., RSA) and protocols enabling digital signatures (e.g., DSA, ECDSA) are an integral part of our life. Although recently developed quantum computers have low processing capacity, huge dimensions and lack of interoperability, we must underline their practical significance – applying Peter Shor’s quantum algorithm (which makes it possible to factorize integers in polynomial time) public key cryptography is set to become breakable. As an answer, symmetric key cryptography proves to be secure against quantum based attacks and with it quantum key distribution (QKD) is going through vast development and growing to be a hot topic in data security. This is due to such methods securely generating symmetric keys by protocols relying on laws of quantum physics.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Darius Bunandar ◽  
Luke C. G. Govia ◽  
Hari Krovi ◽  
Dirk Englund

AbstractQuantum key distribution (QKD) allows for secure communications safe against attacks by quantum computers. QKD protocols are performed by sending a sizeable, but finite, number of quantum signals between the distant parties involved. Many QKD experiments, however, predict their achievable key rates using asymptotic formulas, which assume the transmission of an infinite number of signals, partly because QKD proofs with finite transmissions (and finite-key lengths) can be difficult. Here we develop a robust numerical approach for calculating the key rates for QKD protocols in the finite-key regime in terms of two semi-definite programs (SDPs). The first uses the relation between conditional smooth min-entropy and quantum relative entropy through the quantum asymptotic equipartition property, and the second uses the relation between the smooth min-entropy and quantum fidelity. The numerical programs are formulated under the assumption of collective attacks from the eavesdropper and can be promoted to withstand coherent attacks using the postselection technique. We then solve these SDPs using convex optimization solvers and obtain numerical calculations of finite-key rates for several protocols difficult to analyze analytically, such as BB84 with unequal detector efficiencies, B92, and twin-field QKD. Our numerical approach democratizes the composable security proofs for QKD protocols where the derived keys can be used as an input to another cryptosystem.


2016 ◽  
Vol 14 (02) ◽  
pp. 1630002
Author(s):  
Monika Jacak ◽  
Janusz Jacak ◽  
Piotr Jóźwiak ◽  
Ireneusz Jóźwiak

The overview of the current status of quantum cryptography is given in regard to quantum key distribution (QKD) protocols, implemented both on nonentangled and entangled flying qubits. Two commercial R&D platforms of QKD systems are described (the Clavis II platform by idQuantique implemented on nonentangled photons and the EPR S405 Quelle platform by AIT based on entangled photons) and tested for feasibility of their usage in commercial TELECOM fiber metropolitan networks. The comparison of systems efficiency, stability and resistivity against noise and hacker attacks is given with some suggestion toward system improvement, along with assessment of two models of QKD.


Author(s):  
Ming Fang ◽  
Ya-Ping Li ◽  
Li Fei

Quantum key distribution (QKD) allows authenticated parties to share secure keys. Its security comes from quantum physics rather than computational complexity. The previous work has been able to demonstrate the security of the BB84 protocol based on the uncertainty principle, entanglement purification and information theory. In the security proof method based on entanglement purification, it is assumed that the information of Calderbank–Shor–Steane (CSS) error correction code cannot be leaked, otherwise, it is insecure. However, there is no quantitative analysis of the relationship between the parameter of CSS code and the amount of information leaked. In the attack and defense strategy of the actual quantum key distribution system, especially in the application of the device that is easy to lose or out of control, it is necessary to assess the impact of the parameter leakage. In this paper, we derive the relationship between the leaked parameter of CSS code and the amount of the final key leakage based on the BB84 protocol. Based on this formula, we simulated the impact of different CSS code parameter leaks on the final key amount. Through the analysis of simulation results, the security of the BB84 protocol is inversely proportional to the value of [Formula: see text] and [Formula: see text] in the case of the CSS code leak.


Author(s):  
Meenakshi Sharma ◽  
Sonia Thind

In order to protect and secure the sensitive data over the internet, the current data security methods typically depend on the cryptographic systems. Recent achievements in quantum computing is a major challenge to such cryptography systems. In this way, the quantum key distribution (QKD) technique evolves as a very important technique which gives un-conditional data security. This technique is based on the laws of quantum physics for its security. This article gives a detailed description of the QKD technique. This technique secures the encryption key delivery between the two authenticated parties from the unauthorized access. In the next phase, quantum cryptography model is discussed. Finally, some important application areas and limitations of this technology are be discussed.


2021 ◽  
Vol 53 (6) ◽  
Author(s):  
Xiaobo Zheng ◽  
Zhiwen Zhao

AbstractQuantum key distribution uses the principle of quantum physics to realize unconditionally secure key distribution protocol. But this kind of security needs to be based on the authenticated classical channel. Although there are quantum key distribution protocols without classical channel, authentication is still needed. In the process of key distribution, authentication is not considered, which is also a problem of quantum key distribution protocol. In this paper, a quantum key distribution protocol with two-way authentication is proposed. Identity authentication is carried out at the same time of key distribution. If the identity authentication fails, the key distribution protocol cannot be carried out. If the key distribution protocol is aborted, the identity authentication is not successful. The conclusion of this paper is based on a central authentication system supported by symmetric encryption theory, which uses pseudo-random functions, multiple sets of quantum conjugate bases and Measurement-device-independent technology to simultaneously achieve two-way authentication and key distribution.


2021 ◽  
Author(s):  
Ling-Jun Kong ◽  
Furong Zhang ◽  
Jingfeng Zhang ◽  
Yifan Sun ◽  
Xiangdong Zhang

Abstract Cryptography plays an important role in information security, which is widely applied in the various fields of society. Quantum cryptography has shown its great advantages in information security compared with the classical one. Two major directions of quantum cryptography are quantum key distribution (QKD) and quantum encryption, with the former focusing on secure key distribution and the latter focusing on encryption using quantum algorithms. In contrast to the well accepted success of the QKD, the development of quantum encryption is rather limited because of the difficulties of building up algorithms and the constructing the practical quantum computers. Here we propose a new scheme of quantum encryption based on high-dimensional entanglement holography. Firstly, we experimentally realize the quantum holography based on the high-dimensional orbital angular momentum (OAM) entanglement. Then, OAM-selective holographic scheme for quantum encryption is proposed and demonstrated. Our results show that introducing quantum entangled state into OAM holography makes the OAM holography possess infinite information channels and the transmission of information be absolute security in principle. Furthermore, decryption in the presence of strong noise is achieved. Our work opens up a new way to realize quantum information security.


Quantum Key Distribution (QKD) has been developed over the last decade; QKD addresses the challenge of a securely exchanging cryptographic key between two parties over an insecure channel where there are two parties that simultaneously generate and share a secret key using the polarization of quantum states of light by applying the phenomena of quantum physics. The integration of QKD protocol with public key cryptography for securely exchanging the encryption/decryption keys is proposed and simulated, the simulation results evaluate the work of the existing and proposed protocol taking into account different measures. Finally, a short security analysis is given to show the difference between the proposed protocol and its counterparts.


Author(s):  
Meenakshi Sharma ◽  
Sonia Thind

In order to protect and secure the sensitive data over the internet, the current data security methods typically depend on the cryptographic systems. Recent achievements in quantum computing is a major challenge to such cryptography systems. In this way, the quantum key distribution (QKD) technique evolves as a very important technique which gives un-conditional data security. This technique is based on the laws of quantum physics for its security. This article gives a detailed description of the QKD technique. This technique secures the encryption key delivery between the two authenticated parties from the unauthorized access. In the next phase, quantum cryptography model is discussed. Finally, some important application areas and limitations of this technology are be discussed.


2019 ◽  
Vol 11 (2) ◽  
pp. 1-10
Author(s):  
Meenakshi Sharma ◽  
Sonia Thind

In order to protect and secure the sensitive data over the internet, the current data security methods typically depend on the cryptographic systems. Recent achievements in quantum computing is a major challenge to such cryptography systems. In this way, the quantum key distribution (QKD) technique evolves as a very important technique which gives un-conditional data security. This technique is based on the laws of quantum physics for its security. This article gives a detailed description of the QKD technique. This technique secures the encryption key delivery between the two authenticated parties from the unauthorized access. In the next phase, quantum cryptography model is discussed. Finally, some important application areas and limitations of this technology are be discussed.


Sign in / Sign up

Export Citation Format

Share Document