scholarly journals Peer Review #2 of "Characterization of antimicrobial resistance genes in Haemophilus parasuis isolated from pigs in China (v0.2)"

2017 ◽  
Author(s):  
Yongda Zhao ◽  
Lili Guo ◽  
Jie Li ◽  
Xianhui Huang ◽  
Binghu Fang

Background: Haemophilus parasuis is a common porcine respiratory disease that causes high rates of morbidity and mortality in farmed swine. We performed a molecular characterization of antimicrobial resistance genes harbored by H. parasuis from pig farms in China. Methods: We screened 143 H. parasuis isolates for the presence of 64 antimicrobial resistance genes by PCR amplification and DNA sequence analysis. We determined quinolone resistance determining region mutations of DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE). The genetic relatedness among the strains was analyzed by pulsed-field gel electrophoresis. Results: We found 14 antimicrobial resistance genes were present in these isolates, including TEM-1, ROB-1.ermB,ermA ,flor, catl,tetB,tetC, rmtB, rmtD, aadA1, aac(3’)-ⅡC, sul1, and sul2 genes. Interestingly, one isolate carried 5 antibiotic resistance genes (tetB, tetC, flor, rmtB, sul1). The genes tetB, rmtB, and flor were the most prevalent resistance genes in H. parasuis in China. Alterations in the gyrA gene (S83F/Y, D87Y/N/H/G) were detected in 81% of the strains and parC mutations were often accompanied by a gyrA mutation. pulsed-field gel electrophoresis typing revealed 51 unique patterns in the isolates carrying antibiotic resistance genes indicating considerable genetic diversity and suggesting the genes were spread horizontally. Discussion: The current study demonstrated that the high antibiotic resistance of H. parasuis in piglets is a combination of transferable antibiotic resistance genes and multiple target gene mutations. GyrA gene mutation also was the most important role in quinolone resistance. These data provide novel insights for the better understanding of the prevalence and epidemiology of antimicrobial resistance in H. parasuis.


2017 ◽  
Author(s):  
Yongda Zhao ◽  
Lili Guo ◽  
Jie Li ◽  
Xianhui Huang ◽  
Binghu Fang

Background: Haemophilus parasuis is a common porcine respiratory disease that causes high rates of morbidity and mortality in farmed swine. We performed a molecular characterization of antimicrobial resistance genes harbored by H. parasuis from pig farms in China. Methods: We screened 143 H. parasuis isolates for the presence of 64 antimicrobial resistance genes by PCR amplification and DNA sequence analysis. We determined quinolone resistance determining region mutations of DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE). The genetic relatedness among the strains was analyzed by pulsed-field gel electrophoresis. Results: We found 14 antimicrobial resistance genes were present in these isolates, including TEM-1, ROB-1.ermB,ermA ,flor, catl,tetB,tetC, rmtB, rmtD, aadA1, aac(3’)-ⅡC, sul1, and sul2 genes. Interestingly, one isolate carried 5 antibiotic resistance genes (tetB, tetC, flor, rmtB, sul1). The genes tetB, rmtB, and flor were the most prevalent resistance genes in H. parasuis in China. Alterations in the gyrA gene (S83F/Y, D87Y/N/H/G) were detected in 81% of the strains and parC mutations were often accompanied by a gyrA mutation. pulsed-field gel electrophoresis typing revealed 51 unique patterns in the isolates carrying antibiotic resistance genes indicating considerable genetic diversity and suggesting the genes were spread horizontally. Discussion: The current study demonstrated that the high antibiotic resistance of H. parasuis in piglets is a combination of transferable antibiotic resistance genes and multiple target gene mutations. GyrA gene mutation also was the most important role in quinolone resistance. These data provide novel insights for the better understanding of the prevalence and epidemiology of antimicrobial resistance in H. parasuis.


2020 ◽  
Vol 67 (4) ◽  
pp. 460-466
Author(s):  
Katherine E. L. Worsley‐Tonks ◽  
Elizabeth A. Miller ◽  
Stanley D. Gehrt ◽  
Shane C. McKenzie ◽  
Dominic A. Travis ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
R. V. Pereira ◽  
C. Foditsch ◽  
J. D. Siler ◽  
S. C. Dulièpre ◽  
C. Altier ◽  
...  

Abstract The objective of this study was to evaluate the longitudinal effect of enrofloxacin or tulathromycin use in calves at high risk of bovine respiratory disease (BRD) on antimicrobial resistance genes and mutation in quinolone resistance-determining regions (QRDR) in fecal E. coli. Calves at high risk of developing BRD were randomly enrolled in one of three groups receiving: (1) enrofloxacin (ENR; n = 22); (2) tulathromycin (TUL; n = 24); or (3) no treatment (CTL; n = 21). Fecal samples were collected at enrollment and at 7, 28, and 56 days after beginning treatment, cultured for Escherichiacoli (EC) and DNA extracted. Isolates were screened for cephalosporin, quinolone and tetracycline resistance genes using PCR. QRDR screening was conducted using Sanger sequencing. The only resistance genes detected were aac(6′)Ib-cr (n = 13), bla-CTX-M (n = 51), bla-TEM (n = 117), tetA (n = 142) and tetB (n = 101). A significantly higher detection of gyrA mutated at position 248 at time points 7 (OR = 11.5; P value = 0.03) and 28 (OR = 9.0; P value = 0.05) was observed in the ENR group when compared to calves in the control group. Our findings support a better understanding of the potential impacts from the use of enrofloxacin in calves on the selection and persistence of resistance.


2019 ◽  
Vol 25 (4) ◽  
pp. 475-479 ◽  
Author(s):  
João Pedro Rueda Furlan ◽  
Danilo Garcia Sanchez ◽  
Inara Fernanda Lage Gallo ◽  
Eliana Guedes Stehling

Sign in / Sign up

Export Citation Format

Share Document