scholarly journals Peer Review #1 of "The combined effects of temperature and aromatase inhibitor on metamorphosis, growth, locomotion, and sex ratio of tiger frog (Hoplobatrachus rugulosus) tadpoles (v0.1)"

Author(s):  
D Papoulias
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8834
Author(s):  
Yun Tang ◽  
Zhi-Qiang Chen ◽  
You-Fu Lin ◽  
Jing-Yi Chen ◽  
Guo-Hua Ding ◽  
...  

Background The tiger frog (Hoplobatrachus rugulosus) is widely raised by many farms in southern region of China as an economically edible frog. The growth, development, and sexual differentiation of amphibians are influenced by temperature and steroid hormone level. However, the problem of hormone residues is caused by the addition of exogenous hormones in frog breeding, it is worth considering whether non-sterol aromatase inhibitors can be used instead of hormones. Methods In our study, H. rugulosus tadpoles were subjected to two water temperatures (29 °C and 34 °C) and three letrozole concentrations in the feed (0, 0.1 and 1 mg/g) to examine the effects of temperature, aromatase inhibitor and their interaction on metamorphosis, locomotion, and sex ratios. A G-test and contingency table were used to analyze the metamorphosis rate of tadpoles and the survival rate of froglets after feeding for 90 days. A G-test was also used to analyze sex ratios in different treatment groups. Results Metamorphosis time and body size (snout–vent length, body mass and condition factor) were significantly different between the two temperature treatments. Metamorphosis time was longer and body size was increased at 29 °C compared to those at 34 °C. Letrozole concentration and the temperature × letrozole interaction did not affect these variables. The jumping distance of froglets following metamorphosis was positively associated with the condition factor; when controlling for condition factor, jumping distance was not affected by temperature, letrozole concentration and their interaction. Temperature and letrozole concentration also did not affect metamorphosis and survival rate. Sex ratio of the control group (0 mg/g letrozole) was 1:1 at 29 °C, but there were more males at 34 °C. The sex ratios of H. rugulosus treated with letrozole at 29 °C and 34 °C were significantly biased toward males, and male ratio increased as letrozole concentration increased. Furthermore, more males were produced at 34 °C than at 29 °C at each letrozole concentration.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 425
Author(s):  
Yunyu Tang ◽  
Haiyan Zhang ◽  
Yu Wang ◽  
Chengqi Fan ◽  
Xiaosheng Shen

This study assessed the impact of increasing seawater surface temperature (SST) and toxic algal abundance (TAA) on the accumulation, tissue distribution and elimination dynamics of paralytic shellfish toxins (PSTs) in mussels. Mytilus coruscus were fed with the PSTs-producing dinoflagellate A. catenella under four simulated environment conditions. The maximum PSTs concentration was determined to be 3548 µg STX eq.kg−1, which was four times higher than the EU regulatory limit. The increasing SST caused a significant decline in PSTs levels in mussels with rapid elimination rates, whereas high TAA increased the PSTs concentration. As a result, the PSTs toxicity levels decreased under the combined condition. Additionally, toxin burdens were assessed within shellfish tissues, with the highest levels quantified in the hepatopancreas. It is noteworthy that the toxin burden shifted towards the mantle from gill, muscle and gonad at the 17th day. Moreover, variability of PSTs was measured, and was associated with changes in each environmental factor. Hence, this study primarily illustrates the combined effects of SST and TAA on PSTs toxicity, showing that increasing environmental temperature is of benefit to lower PSTs toxicity with rapid elimination rates.


2004 ◽  
Vol 35 (12) ◽  
pp. 1131-1140 ◽  
Author(s):  
Cecilia Flores-Vergara ◽  
Beatriz Cordero-Esquivel ◽  
Ana Nallely Ceron-Ortiz ◽  
Bertha O Arredondo-Vega

2010 ◽  
Vol 132 (11) ◽  
Author(s):  
A. Arikoglu ◽  
G. Komurgoz ◽  
I. Ozkol ◽  
A. Y. Gunes

The present work examines the effects of temperature and velocity jump conditions on heat transfer, fluid flow, and entropy generation. As the physical model, the axially symmetrical steady flow of a Newtonian ambient fluid over a single rotating disk is chosen. The related nonlinear governing equations for flow and thermal fields are reduced to ordinary differential equations by applying so-called classical approach, which was first introduced by von Karman. Instead of a numerical method, a recently developed popular semi numerical-analytical technique; differential transform method is employed to solve the reduced governing equations under the assumptions of velocity and thermal jump conditions on the disk surface. The combined effects of the velocity slip and temperature jump on the thermal and flow fields are investigated in great detail for different values of the nondimensional field parameters. In order to evaluate the efficiency of such rotating fluidic system, the entropy generation equation is derived and nondimensionalized. Additionally, special attention has been given to entropy generation, its characteristic and dependency on various parameters, i.e., group parameter, Kn and Re numbers, etc. It is observed that thermal and velocity jump strongly reduce the magnitude of entropy generation throughout the flow domain. As a result, the efficiency of the related physical system increases. A noticeable objective of this study is to give an open form solution of nonlinear field equations. The reduced recurative form of the governing equations presented gives the reader an opportunity to see the solution in open series form.


Sign in / Sign up

Export Citation Format

Share Document