scholarly journals Variation of pyrrolizidine alkaloids in Senecio vulgaris plants from native and invasive ranges

Author(s):  
Dandan Cheng ◽  
Viet-Thang Nguyen ◽  
Noel Ndihokubwayo

Pyrrolizidine alkaloids (PAs), a typical kind of secondary metabolites in plants, have important roles on defense against herbivores and pathogens; however, specialist herbivores adapted to PAs can use them as cues for oviposition and feeding. Thus, in the native ranges, PA diversity and concentration in plants were selected by the balance between pressure from generalist and specialist herbivores. In introduced ranges, where the specialist herbivores are absent, the introduced plants could increase concentration and diversity of PAs. This predication is deduced from the Shift Defense Hypothesis (SDH). In this research, we investigated whether there were any differences between native and invasive Senecio vulgaris plants (from Europe and China, respectively) with regards to the PA composition and concentration. We grew the native and invasive S. vulgaris plants in an identical condition and harvested them when they started to bloom. Their roots and shoots were separately harvested and dried. PA composition and concentration from powder of the shoots and roots were detected by using liquid chromatography – tanderm mass spectrometry (LC-MS/MS). We identified 14 PAs which belongs to the structural group senecionine – like PAs. Most of them occurred in both the native and invasive S. vulgaris plants, except the usaramine N – oxide that was only found in the native ones. From the 14 PAs identified, only riddelliine N – oxide had significantly higher present frequency in the invasive plants than in the native plants. The invasive S. vulgaris plants had significantly lower concentration of 3 individual PAs (seneciphylline N – oxide, spartioidine and spartioidine N – oxide) than the native ones. These results demonstrated that PA diversity and concentration of some individual PAs tended to reduce in the invasive range of S. vulgaris. This is contrary to the predictions of the SDH that the invasive plants would produce more qualitative defense than the native ones, and it is probably an evidence that a little trade – off between defense and growth happened to the S. vulgaris in China.

2016 ◽  
Author(s):  
Dandan Cheng ◽  
Viet-Thang Nguyen ◽  
Noel Ndihokubwayo

Pyrrolizidine alkaloids (PAs), a typical kind of secondary metabolites in plants, have important roles on defense against herbivores and pathogens; however, specialist herbivores adapted to PAs can use them as cues for oviposition and feeding. Thus, in the native ranges, PA diversity and concentration in plants were selected by the balance between pressure from generalist and specialist herbivores. In introduced ranges, where the specialist herbivores are absent, the introduced plants could increase concentration and diversity of PAs. This predication is deduced from the Shift Defense Hypothesis (SDH). In this research, we investigated whether there were any differences between native and invasive Senecio vulgaris plants (from Europe and China, respectively) with regards to the PA composition and concentration. We grew the native and invasive S. vulgaris plants in an identical condition and harvested them when they started to bloom. Their roots and shoots were separately harvested and dried. PA composition and concentration from powder of the shoots and roots were detected by using liquid chromatography – tanderm mass spectrometry (LC-MS/MS). We identified 14 PAs which belongs to the structural group senecionine – like PAs. Most of them occurred in both the native and invasive S. vulgaris plants, except the usaramine N – oxide that was only found in the native ones. From the 14 PAs identified, only riddelliine N – oxide had significantly higher present frequency in the invasive plants than in the native plants. The invasive S. vulgaris plants had significantly lower concentration of 3 individual PAs (seneciphylline N – oxide, spartioidine and spartioidine N – oxide) than the native ones. These results demonstrated that PA diversity and concentration of some individual PAs tended to reduce in the invasive range of S. vulgaris. This is contrary to the predictions of the SDH that the invasive plants would produce more qualitative defense than the native ones, and it is probably an evidence that a little trade – off between defense and growth happened to the S. vulgaris in China.


2016 ◽  
Author(s):  
Dandan Cheng ◽  
Viet - Thang Nguyen ◽  
Noel Ndihokubwayo

According to the Evolution of Increased Competitive Ability (EICA) hypothesis and Enemy Release Hypothesis (ERH), comparing the plants from the same species, individuals from the invasive range will outperform those from the native range. However, not all recent studies support the prediction of these two hypotheses. In this study, we sought to test the prediction by comparing the performance of common groundsel ( Senecio vulgaris ) taken from native (Europe) and invasive (China) ranges. Those plants were grown in a greenhouse and in a common garden, and harvested with various vegetative and reproductive traits measured. We found that although the plants grown in the common garden grew and reproduced better than those grown in the greenhouse, the invasive plants outperformed the native plants in relation to most vegetation parameters (except plant height) and reproduction in both experiments; and generally, the invasive plants allocated more proportion of biomass to root than the native plants. However, the proportion of biomass allocated to reproductive organ and relative dry matter content were the same between the native and invasive plants, no matter among the plants grown in the greenhouse or in the common garden. Our study partially supported the predictions of the EICA and ERH and indicated that evolution might have happened to S. vulgaris invasive to China.


2016 ◽  
Author(s):  
Dandan Cheng ◽  
Viet - Thang Nguyen ◽  
Noel Ndihokubwayo

According to the Evolution of Increased Competitive Ability (EICA) hypothesis and Enemy Release Hypothesis (ERH), comparing the plants from the same species, individuals from the invasive range will outperform those from the native range. However, not all recent studies support the prediction of these two hypotheses. In this study, we sought to test the prediction by comparing the performance of common groundsel ( Senecio vulgaris ) taken from native (Europe) and invasive (China) ranges. Those plants were grown in a greenhouse and in a common garden, and harvested with various vegetative and reproductive traits measured. We found that although the plants grown in the common garden grew and reproduced better than those grown in the greenhouse, the invasive plants outperformed the native plants in relation to most vegetation parameters (except plant height) and reproduction in both experiments; and generally, the invasive plants allocated more proportion of biomass to root than the native plants. However, the proportion of biomass allocated to reproductive organ and relative dry matter content were the same between the native and invasive plants, no matter among the plants grown in the greenhouse or in the common garden. Our study partially supported the predictions of the EICA and ERH and indicated that evolution might have happened to S. vulgaris invasive to China.


2021 ◽  
Author(s):  
Jian Li ◽  
Zhanrui Leng ◽  
Yueming Wu ◽  
Yizhou Du ◽  
Zhicong Dai ◽  
...  

Abstract Global changes have altered the distribution pattern of the plant communities, including invasive species. Anthropogenic contamination may reduce native plant resistance to the invasive species. Thus, the focus of the current review is on the contaminant biogeochemical behavior among native plants, invasive species and the soil within the plant-soil ecosystem to improve our understanding of the interactions between invasive plants and environmental stressors. Our studies together with synthesis of the literature showed that a) the impacts of invasive species on environmental stress were heterogeneous, b) the size of the impact was variable, and c) the influence types were multidirectional even within the same impact type. However, invasive plants showed self-protective mechanisms when exposed to heavy metals (HMs) and provided either positive or negative influence on the bioavailability and toxicity of HMs. On the other hand, HMs may favor plant invasion due to the widespread higher tolerance of invasive plants to HMS together with the “escape behavior” of native plants when exposed to toxic HM pollution. However, there has been no consensus on whether elemental compositions of invasive plants are different from the natives in the polluted regions. A quantitative research comparing plant, litter and soil contaminant contents between native plants and the invaders in a global context is an indispensable research focus in the future.


2018 ◽  
Vol 45 (1) ◽  
pp. 86-94 ◽  
Author(s):  
Daniel N. Anstett ◽  
Iris Cheval ◽  
Caitlyn D’Souza ◽  
Juha-Pekka Salminen ◽  
Marc T. J. Johnson

2022 ◽  
Author(s):  
Yuanfei Pan ◽  
Xiaoyun Pan ◽  
Lucas Del Bianco Faria ◽  
Bo Li

Herbivory degree and the ratio of generalist to specialist herbivores have long been treated as two important but independent factors in shaping the evolution of plant defense. However, this assumption of independency is poorly supported and has resulted in great controversy in explaining the patterns of plant defense. Here we investigated the possible interaction between herbivory degree and generalist-to-specialist ratio using a cost-benefit model of defense evolution in plants. Our results showed that, with increasing generalist herbivore proportion, plant defense investment increases when herbivory degree is low and decreases when herbivory degree is high. These results provide the first theoretical support for the interactive effect of herbivory degree and ratio of generalist/specialist affecting plant defense, which integrate many of the previous results (e.g. latitudinal patterns of plant defense and defense evolution of invasive plants) and put them into a more general theoretical context.


2020 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Enny Widyati

<p><strong>Abstrak.</strong> Seperti halnya dunia manusia, tumbuhan juga mengembangkan sistem komunikasi untuk mencapai kesejahteraan hidupnya. Bahasa yang digunakan adalah senyawa kimia yang diproduksi oleh eksudat akar. Tumbuhan merupakan inisiator karena mereka yang memiliki tujuan untuk apa komunikasi dibangun. Tumbuhan mengeluarkan eksudat akar untuk memanggil atau untuk mengusir mikroba yang diinginkan. Tumbuhan mengirim surat undangan pada beberapa mikroba dengan mensekresikan eksudat akar. Untuk membangun asosiasi mikoriza tumbuhan mengeluarkan gula, asam amino dan strigolakton. Hal tersebut akan dibalas oleh fungi dengan mengeluarkan senyawa flavonoid yang menunjukkan spesifikasi jenis inang-mikoriza. Hadirnya senyawa flavonoid merupakan undangan bagi rhizobium pada tanaman legum untuk membangun asosiasi. Tumbuhan akan menyeleksi rhizobium yang akan diajak berasosiasi dengan mensekresikan senyawa kanavanin yang bersifat toksik. Kesalahan dalam mengeluarkan eksudat akar merupakan surat undangan yang keliru bagi tumbuhan. Dosis senyawa stigolakton yang terlalu rendah tidak akan dapat membentuk asosiasi mikoriza tetapi yang berkembang adalah patogen. Walaupun tumbuhan menghasilkan senyawa fitoantisipin untuk mencegah serangan patogen dan fitoaleksin ketika patogen sudah menginfeksi. Komunikasi akar dengan akar tumbuhan lain dilakukan dengan menghasilkan senyawa alelopati untuk membatasi pertumbuhan akar di sekelilingnya yang dianggap sebagai pesaing. Tanaman invasif atau gulma umumnya selain menghasilkan alelopati juga memproduksi katekin yang dapat membunuh mikroba menguntungkan pada tumbuhan setempat. Akibatnya tumbuhan lokal akan rentan terhadap serangan penyakit dan berujung pada kematian. Selain alelopati, untuk merespon kehadiran tetangganya tumbuhan juga menghasilkan senyawa glukosinolat yang jumlahnya makin meningkat sejalan dengan tingginya biodiversitas vegetasi. Senyawa ini merupakan senyawa beracun bagi patogen, sehingga tumbuhan yang dibudidayakan dengan pola monokultur menjadi rentan terhadap penyakit. Oleh karena itu agar tanah tetap memiliki kandungan senyawa glukosinolat yang memadai serta tetap memelihara kondisi rhizosfir yang dinamis perlu dilakukan pergiliran tanaman varietas lokal setelah beberapa rotasi tanaman.</p><p><em><strong>Abstract.</strong> Similar to human, plants also develop a communication system to achieve their prosperity. Plants utilize chemical compounds of their root exudates as the “languange”. Plants are the initiator of communications, since they define the purposes of building communication. Root exudates are released either to attract or to demenish the soil microbes target as an “invitation letter” to some microbes. To build a mycorrhizal association, for examples, plants issue sugars, amino acids and strygolactones to the rhizosphere. Fungi will reply the invitation by secreting flavonoid compounds that determine host-mycorrhizal specifications. The presence of flavonoids is another invitation to rhizobia to establish association in legume rhizosphere. Plants will select attracted bacteria to build the most host-specific rhizobium association by secreting canavanine compounds that are toxic to non-target rhizobia. Occasionally, an error happened in issuing invitation. When plant release strygolactone in a very low dosages, it will be failure to build mycorrhizal associations otherwise pathogen colonizations, although plants produce either phytoantisipine to prevent pathogens infection or phytoalexin to counter infected pathogens. Communication among roots of neighboring plants is conducted by producing allellopathy compound to limit root growth of the competitors. Invasive plants or weeds generally also produce catechine compounds over the allellophaty that will eliminate soil beneficial microbes of the indigenous plants. As a result, the native plants will be vulnerable to disease and lead to distinct. Responding to the presence of neighboring roots, plants also produce glucosinolate compounds. Glucocynolate consentration will be increased in line with the richness of vegetation biodiversity. These compounds are toxic to the pathogen, which is why plants cultivated in monoculture become more susceptible to disease. Furthermore, to improve soil glucocynolate and to manage the dynamics in the rhizosphere, need to a shift cultivation after several rotations of a commodity with the local varieties.</em></p>


2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Dody Priosambodo

Research about coastal forest vegetation in Sabutung island has been conducted.The aim of this research was to make an inventory of native species, introduced speciesand invasive spesies of plant in Sabutungisland. Sampling activities conducted withpurposive sampling method.Data collected with noted the plant species that foundduring exploring the island. All sample are photographed. Unidentified sample werecollected and identified in Marine and Environmental laboratory, Department ofBiology, Faculty of Mathematics and Natural Sciences, Hasanuddin University.Identification of the sample conducted based on: An Annotated Check-List of TheVascular Plants of The South China Sea and Its Shores by Turner et al. (2000) and Mangrove Guidebook for Southeast Asia by Wim Giesen et al. (2007)for coastal forestspecies; Tropical flowering plants: a guide to identification and cultivation by KirstenAlbrecht Llamas (2003) for introduced species andNonnative Invasive Plants of PacificCoast Forest. A Field Guide for Identification oleh Gray et al. (2011) and Guide to TheNaturalized and Invasive Plants of Southeast Asia by Arne Witt (2017) for invasivespecies. Data were analysed descriptively and displayed in tabular form. Antropogenicimpact i.e: land conversion and increased population were also discussed. From theresults of the study were recorded as many as 221 species of plants in Sabutung Island.Mostly dominated by ornamental plants and cultivated (introduced) plants with 131species of 46 tribes followed by native species with 67 species from 34 tribes. Invasivespecies were recorded with at least 19 species from 8 tribes. Nonetheless, invasivespecies are widespread and dominate space in almost all parts of the island. Most of thecoastal forest on Sabutung Island has been lost due to land conversion to settlementsand garden/plantation.


Sign in / Sign up

Export Citation Format

Share Document