scholarly journals Standardizing unique molecular identifiers in SAM flags would benefit more than RNA-Seq

Author(s):  
Elisha D Roberson

Unique Molecular Identifiers (UMIs) have been incorporated into RNA-Seq experiments to overcome issues with abundance estimation from samples that may have many PCR amplification cycles. However, the use of UMIs in many different types of sequencing experiments could be beneficial, including amplicon sequencing, ATAC-Seq, and ChIP-Seq. Furthermore, UMIs help to overcome artifacts in high-coverage DNA-Seq, and would enable more accurate RNA-Seq genotyping and allele-specific expression calculation. The main advantage of using UMIs is that identical molecules that are true PCR duplicates can be discerned from unique molecules with identical break points.

2016 ◽  
Author(s):  
Elisha D Roberson

Unique Molecular Identifiers (UMIs) have been incorporated into RNA-Seq experiments to overcome issues with abundance estimation from samples that may have many PCR amplification cycles. However, the use of UMIs in many different types of sequencing experiments could be beneficial, including amplicon sequencing, ATAC-Seq, and ChIP-Seq. Furthermore, UMIs help to overcome artifacts in high-coverage DNA-Seq, and would enable more accurate RNA-Seq genotyping and allele-specific expression calculation. The main advantage of using UMIs is that identical molecules that are true PCR duplicates can be discerned from unique molecules with identical break points.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Joseph Tomlinson ◽  
Shawn W. Polson ◽  
Jing Qiu ◽  
Juniper A. Lake ◽  
William Lee ◽  
...  

AbstractDifferential abundance of allelic transcripts in a diploid organism, commonly referred to as allele specific expression (ASE), is a biologically significant phenomenon and can be examined using single nucleotide polymorphisms (SNPs) from RNA-seq. Quantifying ASE aids in our ability to identify and understand cis-regulatory mechanisms that influence gene expression, and thereby assist in identifying causal mutations. This study examines ASE in breast muscle, abdominal fat, and liver of commercial broiler chickens using variants called from a large sub-set of the samples (n = 68). ASE analysis was performed using a custom software called VCF ASE Detection Tool (VADT), which detects ASE of biallelic SNPs using a binomial test. On average ~ 174,000 SNPs in each tissue passed our filtering criteria and were considered informative, of which ~ 24,000 (~ 14%) showed ASE. Of all ASE SNPs, only 3.7% exhibited ASE in all three tissues, with ~ 83% showing ASE specific to a single tissue. When ASE genes (genes containing ASE SNPs) were compared between tissues, the overlap among all three tissues increased to 20.1%. Our results indicate that ASE genes show tissue-specific enrichment patterns, but all three tissues showed enrichment for pathways involved in translation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Asia Mendelevich ◽  
Svetlana Vinogradova ◽  
Saumya Gupta ◽  
Andrey A. Mironov ◽  
Shamil R. Sunyaev ◽  
...  

AbstractA sensitive approach to quantitative analysis of transcriptional regulation in diploid organisms is analysis of allelic imbalance (AI) in RNA sequencing (RNA-seq) data. A near-universal practice in such studies is to prepare and sequence only one library per RNA sample. We present theoretical and experimental evidence that data from a single RNA-seq library is insufficient for reliable quantification of the contribution of technical noise to the observed AI signal; consequently, reliance on one-replicate experimental design can lead to unaccounted-for variation in error rates in allele-specific analysis. We develop a computational approach, Qllelic, that accurately accounts for technical noise by making use of replicate RNA-seq libraries. Testing on new and existing datasets shows that application of Qllelic greatly decreases false positive rate in allele-specific analysis while conserving appropriate signal, and thus greatly improves reproducibility of AI estimates. We explore sources of technical overdispersion in observed AI signal and conclude by discussing design of RNA-seq studies addressing two biologically important questions: quantification of transcriptome-wide AI in one sample, and differential analysis of allele-specific expression between samples.


Genetics ◽  
2013 ◽  
Vol 195 (3) ◽  
pp. 1157-1166 ◽  
Author(s):  
Sandrine Lagarrigue ◽  
Lisa Martin ◽  
Farhad Hormozdiari ◽  
Pierre-François Roux ◽  
Calvin Pan ◽  
...  

Gene ◽  
2018 ◽  
Vol 641 ◽  
pp. 367-375 ◽  
Author(s):  
Maria Oczkowicz ◽  
Tomasz Szmatoła ◽  
Katarzyna Piórkowska ◽  
Katarzyna Ropka-Molik

2018 ◽  
Vol 34 (13) ◽  
pp. 2177-2184 ◽  
Author(s):  
Narayanan Raghupathy ◽  
Kwangbom Choi ◽  
Matthew J Vincent ◽  
Glen L Beane ◽  
Keith S Sheppard ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Emily Berger ◽  
Deniz Yorukoglu ◽  
Lillian Zhang ◽  
Sarah K. Nyquist ◽  
Alex K. Shalek ◽  
...  

Abstract Haplotype reconstruction of distant genetic variants remains an unsolved problem due to the short-read length of common sequencing data. Here, we introduce HapTree-X, a probabilistic framework that utilizes latent long-range information to reconstruct unspecified haplotypes in diploid and polyploid organisms. It introduces the observation that differential allele-specific expression can link genetic variants from the same physical chromosome, thus even enabling using reads that cover only individual variants. We demonstrate HapTree-X’s feasibility on in-house sequenced Genome in a Bottle RNA-seq and various whole exome, genome, and 10X Genomics datasets. HapTree-X produces more complete phases (up to 25%), even in clinically important genes, and phases more variants than other methods while maintaining similar or higher accuracy and being up to 10×  faster than other tools. The advantage of HapTree-X’s ability to use multiple lines of evidence, as well as to phase polyploid genomes in a single integrative framework, substantially grows as the amount of diverse data increases.


2014 ◽  
Vol 151 (1_suppl) ◽  
pp. P226-P226
Author(s):  
Maria K. L. Ho ◽  
Yehudit Hasin ◽  
Aldons J. Lusis ◽  
Rick A. Friedman

2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Valerio Costa ◽  
Claudia Angelini ◽  
Italia De Feis ◽  
Alfredo Ciccodicola

In recent years, the introduction of massively parallel sequencing platforms for Next Generation Sequencing (NGS) protocols, able to simultaneously sequence hundred thousand DNA fragments, dramatically changed the landscape of the genetics studies. RNA-Seq for transcriptome studies, Chip-Seq for DNA-proteins interaction, CNV-Seq for large genome nucleotide variations are only some of the intriguing new applications supported by these innovative platforms. Among them RNA-Seq is perhaps the most complex NGS application. Expression levels of specific genes, differential splicing, allele-specific expression of transcripts can be accurately determined by RNA-Seq experiments to address many biological-related issues. All these attributes are not readily achievable from previously widespread hybridization-based or tag sequence-based approaches. However, the unprecedented level of sensitivity and the large amount of available data produced by NGS platforms provide clear advantages as well as new challenges and issues. This technology brings the great power to make several new biological observations and discoveries, it also requires a considerable effort in the development of new bioinformatics tools to deal with these massive data files. The paper aims to give a survey of the RNA-Seq methodology, particularly focusing on the challenges that this application presents both from a biological and a bioinformatics point of view.


Sign in / Sign up

Export Citation Format

Share Document