scholarly journals Modulation of transcriptional activity in brain lower grade glioma by alternative splicing

Author(s):  
Jin Li ◽  
Yang Wang ◽  
Xianglian Meng ◽  
Hong Liang

Proteins that modify the activity of transcription factor (TF), often called modulators, play a vital role in gene transcriptional regulation. Alternative splicing is a critical step of gene processing and it can modulate gene function by adding or removing certain protein domains, and therefore influences the activity of a protein. The objective of this study is to investigate the role of alternative splicing in modulating the transcriptional regulation in brain lower grade glioma (LGG), especially transcription factor ELK1, which is closely related to various diseases, including Alzheimer’s disease and down syndrome. Results showed that changes in the exon inclusion ratio of proteins APP and STK16 are associated with changes in the expression correlation between ELK1 and its targets. Meanwhile, the structural features of the two modulators are strongly associated with the pathological impact of exon inclusion. Our analysis suggests, protein in different splicing level could play different functions on transcription factors, hence induces multiple genes dysregulation.

2018 ◽  
Author(s):  
Jin Li ◽  
Yang Wang ◽  
Xianglian Meng ◽  
Hong Liang

Proteins that modify the activity of transcription factor (TF), often called modulators, play a vital role in gene transcriptional regulation. Alternative splicing is a critical step of gene processing and it can modulate gene function by adding or removing certain protein domains, and therefore influences the activity of a protein. The objective of this study is to investigate the role of alternative splicing in modulating the transcriptional regulation in brain lower grade glioma (LGG), especially transcription factor ELK1, which is closely related to various diseases, including Alzheimer’s disease and down syndrome. Results showed that changes in the exon inclusion ratio of proteins APP and STK16 are associated with changes in the expression correlation between ELK1 and its targets. Meanwhile, the structural features of the two modulators are strongly associated with the pathological impact of exon inclusion. Our analysis suggests, protein in different splicing level could play different functions on transcription factors, hence induces multiple genes dysregulation.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4686 ◽  
Author(s):  
Jin Li ◽  
Yang Wang ◽  
Xianglian Meng ◽  
Hong Liang

Proteins that modify the activity of transcription factors (TFs) are often called modulators and play a vital role in gene transcriptional regulation. Alternative splicing is a critical step of gene processing, and differentially spliced isoforms may have different functions. Alternative splicing can modulate gene function by adding or removing certain protein domains and thereby influence the activity of a protein. The objective of this study is to investigate the role of alternative splicing in modulating the transcriptional regulation in brain lower grade glioma (LGG), especially transcription factor ELK1, which is closely related to various disorders, including Alzheimer’s disease and Down syndrome. The results showed that changes in the exon inclusion ratio of proteins APP and STK16 are associated with changes in the expression correlation between ELK1 and its targets. In addition, the structural features of the two modulators are strongly associated with the pathological impact of exon inclusion. The results of our analysis suggest that alternatively spliced proteins have different functions in modifying transcription factors and can thereby induce the dysregulation of multiple genes.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Dawei Chen ◽  
Zhenguo Zhao ◽  
Lu Chen ◽  
Qinghua Li ◽  
Jixue Zou ◽  
...  

AbstractEmerging evidence has demonstrated that alternative splicing has a vital role in regulating protein function, but how alternative splicing factors can be regulated remains unclear. We showed that the PPM1G, a protein phosphatase, regulated the phosphorylation of SRSF3 in hepatocellular carcinoma (HCC) and contributed to the proliferation, invasion, and metastasis of HCC. PPM1G was highly expressed in HCC tissues compared to adjacent normal tissues, and higher levels of PPM1G were observed in adverse staged HCCs. The higher levels of PPM1G were highly correlated with poor prognosis, which was further validated in the TCGA cohort. The knockdown of PPM1G inhibited the cell growth and invasion of HCC cell lines. Further studies showed that the knockdown of PPM1G inhibited tumor growth in vivo. The mechanistic analysis showed that the PPM1G interacted with proteins related to alternative splicing, including SRSF3. Overexpression of PPM1G promoted the dephosphorylation of SRSF3 and changed the alternative splicing patterns of genes related to the cell cycle, the transcriptional regulation in HCC cells. In addition, we also demonstrated that the promoter of PPM1G was activated by multiple transcription factors and co-activators, including MYC/MAX and EP300, MED1, and ELF1. Our study highlighted the essential role of PPM1G in HCC and shed new light on unveiling the regulation of alternative splicing in malignant transformation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haiwei Wang ◽  
Xinrui Wang ◽  
Liangpu Xu ◽  
Ji Zhang ◽  
Hua Cao

AbstractBased on isocitrate dehydrogenase (IDH) alterations, lower grade glioma (LGG) is divided into IDH mutant and wild type subgroups. However, the further classification of IDH wild type LGG was unclear. Here, IDH wild type LGG patients in The Cancer Genome Atlas and Chinese Glioma Genome Atlas were divided into two sub-clusters using non-negative matrix factorization. IDH wild type LGG patients in sub-cluster2 had prolonged overall survival and low frequency of CDKN2A alterations and low immune infiltrations. Differentially expressed genes in sub-cluster1 were positively correlated with RUNX1 transcription factor. Moreover, IDH wild type LGG patients with higher stromal score or immune score were positively correlated with RUNX1 transcription factor. RUNX1 and its target gene REXO2 were up-regulated in sub-cluster1 and associated with the worse prognosis of IDH wild type LGG. RUNX1 and REXO2 were associated with the higher immune infiltrations. Furthermore, RUNX1 and REXO2 were correlated with the worse prognosis of LGG or glioma. IDH wild type LGG in sub-cluster2 was hyper-methylated. REXO2 hyper-methylation was associated with the favorable prognosis of LGG or glioma. At last, we showed that, age, tumor grade and REXO2 expression were independent prognostic factors in IDH wild type LGG.


Neurosurgery ◽  
2021 ◽  
Author(s):  
Peng Wang ◽  
Chen Luo ◽  
Peng-jie Hong ◽  
Wen-ting Rui ◽  
Shuai Wu

Abstract BACKGROUND While maximizing extent of resection (EOR) is associated with longer survival in lower-grade glioma (LGG) patients, the number of cases remains insufficient in determining a EOR threshold to elucidate the clinical benefits, especially in IDH-wild-type LGG patients. OBJECTIVE To identify the effects of EOR on the survival outcomes of IDH-wild-type LGG patients. METHODS IDH-wild-type LGG patients were retrospectively reviewed. The effect of EOR and other predictor variables on overall survival (OS) and progression-free survival (PFS) was analyzed using Cox regression models and the Kaplan-Meier method. RESULTS A total of 94 patients (median OS: 48.9 mo; median follow-up: 30.6 mo) were included in this study. In the multivariable Cox regression analysis, postoperative residual volume was associated with prolonged OS (HR = 2.238; 95% confidence interval [CI], 1.130-4.435; P = .021) and PFS (HR = 2.075; 95% CI, 1.113-3.869; P = .022). Thresholds at a minimum EOR of 97.0% or a maximum residue of 3.0 cm3 were necessary to impact OS positively. For the telomerase reverse transcriptase (TERT)p-wild-type group, such an association was absent. Significant differences in survival existed between the TERTp-wild-type and mutant patients who underwent relatively incomplete resections (residual ≥2.0 cm3 + TERTp wild type: median OS of 62.6 mo [95% CI: 39.7-85.5 mo]; residual ≥2.0 cm3 + TERTp mutant: median OS of 20.0 mo [95% CI:14.6-25.4 mo]). CONCLUSION Our results support the core role of maximal safe resection in the treatment of IDH-wild-type LGGs, especially for IDH-wild-type + TERTp-mutant LGGs. Importantly, the survival benefits of surgery could only be elucidated at a high EOR cut-off point.


2008 ◽  
Vol 365 (4) ◽  
pp. 643-649 ◽  
Author(s):  
Sanjukta Subudhi ◽  
Pavinee Kurdrid ◽  
Apiradee Hongsthong ◽  
Matura Sirijuntarut ◽  
Supapon Cheevadhanarak ◽  
...  

2011 ◽  
Vol 7 ◽  
pp. S552-S552
Author(s):  
Juan Anaya ◽  
Victoria Kay ◽  
Roberto Simone ◽  
Geshanthi Hondhamuni ◽  
Andrew Lees ◽  
...  

2013 ◽  
Vol 99 (3) ◽  
pp. 514-524 ◽  
Author(s):  
Yimeng Song ◽  
Xiaoxia Li ◽  
Dawei Wang ◽  
Chenglai Fu ◽  
Zhenjiu Zhu ◽  
...  

Abstract Aims Endothelial colony forming cells (ECFCs) participate in post-natal vasculogenesis. We previously reported that vascular endothelial growth factor (VEGF) promotes human ECFC differentiation through AMP-activated protein kinase (AMPK) activation. However, the mechanisms underlying transcriptional regulation of ECFC differentiation still remain largely elusive. Here, we investigated the role of transcription factor Krüppel-like factor 2 (KLF2) in the regulation of ECFC function. Methods and results Human ECFCs were isolated from cord blood and cultured. Treatment with VEGF significantly increased endothelial markers in ECFCs and their capacity for migration and tube formation. The mRNA and protein levels of KLF2 were also significantly up-regulated. This up-regulation was abrogated by AMPK inhibition or by knockdown of KLF2 with siRNA. Furthermore, adenovirus-mediated overexpression of KLF2 promoted ECFC differentiation by enhancing expression of endothelial cell markers, reducing expression of progenitor cell markers, and increasing the capacity for tube formation in vitro, indicating the important role of KLF2 in ECFC-mediated angiogenesis. Histone deacetylase 5 (HDAC5) was phosphorylated by AMPK activity induced by VEGF and the AMPK agonist AICAR (5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide). In vivo angiogenesis assay revealed that overexpression of KLF2 in bone-marrow-derived pro-angiogenic progenitor cells promoted vessel formation when the cells were implanted in C57BL/6 mice. Conclusion Up-regulation of KLF2 by AMPK activation constitutes a novel mechanism of ECFC differentiation, and may have therapeutic value in the treatment of ischaemic heart disease.


Sign in / Sign up

Export Citation Format

Share Document