scholarly journals Rubber Hand Illusion does not arise from comparisons with internal body models: a new multisensory integration account of the sense of ownership

Author(s):  
Piotr Litwin

Human body sense is surprisingly flexible – precisely administered multisensory stimulation may result in the illusion that an external object is part of one’s body. There seems to be a general consensus that there are certain top-down constraints on which objects may be incorporated: in particular, to-be-embodied objects should be structurally similar to a visual representation stored in an internal body model for a shift in one’s body image to occur. However, empirical evidence contradicts the body model hypothesis: the sense of ownership may be spread over objects strikingly distinct in morphology and structure (e.g., robotic arms or empty space) and direct empirical support for the theory is currently lacking. As an alternative, based on the example of the rubber hand illusion (RHI), I propose a multisensory integration account of how the sense of ownership is induced. In this account, the perception of one’s own body is a regular type of multisensory perception and multisensory integration processes are not only necessary but also sufficient for embodiment. In this paper, I propose how RHI can be modeled with the use of Maximum Likelihood Estimation and natural correlation rules. I also discuss how Bayesian Coupling Priors and idiosyncrasies in sensory processing render prior distributions interindividually variable, accounting for large interindividual differences in susceptibility to RHI. Taken together, the proposed model accounts for exceptional malleability of human body perception, fortifies existing bottom-up multisensory integration theories with top-down models of relatedness of sensory cues, and generates testable and disambiguating predictions.

2018 ◽  
Author(s):  
Piotr Litwin

Human body sense is surprisingly flexible – precisely administered multisensory stimulation may result in the illusion that an external object is part of one’s body. There seems to be a general consensus that there are certain top-down constraints on which objects may be incorporated: in particular, to-be-embodied objects should be structurally similar to a visual representation stored in an internal body model for a shift in one’s body image to occur. However, empirical evidence contradicts the body model hypothesis: the sense of ownership may be spread over objects strikingly distinct in morphology and structure (e.g., robotic arms or empty space) and direct empirical support for the theory is currently lacking. As an alternative, based on the example of the rubber hand illusion (RHI), I propose a multisensory integration account of how the sense of ownership is induced. In this account, the perception of one’s own body is a regular type of multisensory perception and multisensory integration processes are not only necessary but also sufficient for embodiment. In this paper, I propose how RHI can be modeled with the use of Maximum Likelihood Estimation and natural correlation rules. I also discuss how Bayesian Coupling Priors and idiosyncrasies in sensory processing render prior distributions interindividually variable, accounting for large interindividual differences in susceptibility to RHI. Taken together, the proposed model accounts for exceptional malleability of human body perception, fortifies existing bottom-up multisensory integration theories with top-down models of relatedness of sensory cues, and generates testable and disambiguating predictions.


2018 ◽  
Author(s):  
Laura Crucianelli ◽  
Yannis Paloyelis ◽  
Lucia Ricciardi ◽  
Paul M Jenkinson ◽  
Aikaterini Fotopoulou

AbstractMultisensory integration processes are fundamental to our sense of self as embodied beings. Bodily illusions, such as the rubber hand illusion (RHI) and the size-weight illusion (SWI), allow us to investigate how the brain resolves conflicting multisensory evidence during perceptual inference in relation to different facets of body representation. In the RHI, synchronous tactile stimulation of a participant’s hidden hand and a visible rubber hand creates illusory bodily ownership; in the SWI, the perceived size of the body can modulate the estimated weight of external objects. According to Bayesian models, such illusions arise as an attempt to explain the causes of multisensory perception and may reflect the attenuation of somatosensory precision, which is required to resolve perceptual hypotheses about conflicting multisensory input. Recent hypotheses propose that the precision or salience of sensorimotor representations is determined by modulators of synaptic gain, like dopamine, acetylcholine and oxytocin. However, these neuromodulatory hypotheses have not been tested in the context of embodied multisensory integration. The present, double-blind, placebo-controlled, crossed-over study (N = 41 healthy volunteers) aimed to investigate the effect of intranasal oxytocin (IN-OT) on multisensory integration processes, tested by means of the RHI and the SWI. Results showed that IN-OT enhanced the subjective feeling of ownership in the RHI, only when synchronous tactile stimulation was involved. Furthermore, IN-OT increased the embodied version of the SWI (quantified as weight estimation error). These findings suggest that oxytocin might modulate processes of visuo-tactile multisensory integration by increasing the precision of top-down signals against bottom-up sensory input.


2018 ◽  
Author(s):  
Maria Laura Filippetti ◽  
Louise P. Kirsch ◽  
Laura Crucianelli ◽  
Aikaterini Fotopoulou

AbstractOur sense of body ownership relies on integrating different sensations according to their temporal and spatial congruency. Nevertheless, there is ongoing controversy about the role of affective congruency during multisensory integration, i.e. whether the stimuli to be perceived by the different sensory channels are congruent or incongruent in terms of their affective quality. In the present study, we applied a widely used multisensory integration paradigm, the Rubber Hand Illusion, to investigate the role of affective, top-down aspects of sensory congruency between visual and tactile modalities in the sense of body ownership. In Experiment 1 (N = 36), we touched participants with either soft or rough fabrics in their unseen hand, while they watched a rubber hand been touched synchronously with the same fabric or with a ‘hidden’ fabric of ‘uncertain roughness’. In Experiment 2 (N = 50), we used the same paradigm as in Experiment 1, but replaced the ‘uncertainty’ condition with an ‘incongruent’ one, in which participants saw the rubber hand being touched with a fabric of incongruent roughness and hence opposite valence. We found that certainty (Experiment 1) and congruency (Experiment 2) between the felt and vicariously perceived tactile affectivity led to higher subjective embodiment compared to uncertainty and incongruency, respectively, irrespective of any valence effect. Our results suggest that congruency in the affective top-down aspects of sensory stimulation is important to the multisensory integration process leading to embodiment, over and above temporal and spatial properties.


2019 ◽  
Vol 31 (4) ◽  
pp. 592-606 ◽  
Author(s):  
Laura Crucianelli ◽  
Yannis Paloyelis ◽  
Lucia Ricciardi ◽  
Paul M. Jenkinson ◽  
Aikaterini Fotopoulou

Multisensory integration processes are fundamental to our sense of self as embodied beings. Bodily illusions, such as the rubber hand illusion (RHI) and the size–weight illusion (SWI), allow us to investigate how the brain resolves conflicting multisensory evidence during perceptual inference in relation to different facets of body representation. In the RHI, synchronous tactile stimulation of a participant's hidden hand and a visible rubber hand creates illusory body ownership; in the SWI, the perceived size of the body can modulate the estimated weight of external objects. According to Bayesian models, such illusions arise as an attempt to explain the causes of multisensory perception and may reflect the attenuation of somatosensory precision, which is required to resolve perceptual hypotheses about conflicting multisensory input. Recent hypotheses propose that the precision of sensorimotor representations is determined by modulators of synaptic gain, like dopamine, acetylcholine, and oxytocin. However, these neuromodulatory hypotheses have not been tested in the context of embodied multisensory integration. The present, double-blind, placebo-controlled, crossover study ( n = 41 healthy volunteers) aimed to investigate the effect of intranasal oxytocin (IN-OT) on multisensory integration processes, tested by means of the RHI and the SWI. Results showed that IN-OT enhanced the subjective feeling of ownership in the RHI, only when synchronous tactile stimulation was involved. Furthermore, IN-OT increased an embodied version of the SWI (quantified as estimation error during a weight estimation task). These findings suggest that oxytocin might modulate processes of visuotactile multisensory integration by increasing the precision of top–down signals against bottom–up sensory input.


2020 ◽  
Vol 33 (2) ◽  
pp. 127-160 ◽  
Author(s):  
Piotr Litwin

Abstract Human body sense is surprisingly flexible — in the Rubber Hand Illusion (RHI), precisely administered visuo-tactile stimulation elicits a sense of ownership over a fake hand. The general consensus is that there are certain semantic top-down constraints on which objects may be incorporated in this way: in particular, to-be-embodied objects should be structurally similar to a visual representation stored in an internal body model. However, empirical evidence shows that the sense of ownership may extend to objects strikingly distinct in morphology and structure (e.g., robotic arms) and the hypothesis about the relevance of appearance lacks direct empirical support. Probabilistic multisensory integration approaches constitute a promising alternative. However, the recent Bayesian models of RHI limit too strictly the possible factors influencing likelihood and prior probability distributions. In this paper, I analyse how Bayesian models of RHI could be extended. The introduction of skin-based spatial information can account for the cross-compensation of sensory signals giving rise to RHI. Furthermore, addition of Bayesian Coupling Priors, depending on (1) internal learned models of relatedness (coupling strength) of sensory cues, (2) scope of temporal binding windows, and (3) extension of peripersonal space, would allow quantification of individual tendencies to integrate divergent visual and somatosensory signals. The extension of Bayesian models would yield an empirically testable proposition accounting comprehensively for a wide spectrum of RHI-related phenomena and rendering appearance-oriented internal body models explanatorily redundant.


Author(s):  
José Luis Bermúdez

In the last 20 years, a robust experimental paradigm has emerged for studying the structure of bodily experience, focusing primarily on what it is to experience one’s body as one’s own. The initial impetus came from the rubber hand illusion (RHI) first demonstrated by Botvinick and Cohen, subsequently extended by various researchers to generate illusions of ownership at the level of the body as a whole. This paper identifies some problems with how ownership is discussed in the context of bodily illusions, and then shows how those problems can be addressed through a model of the experienced space of the body. Section 1 briefly reviews the bodily illusions literature and its significance for cognitive science and philosophy. Section 2 expresses reservations with the concept of ownership in terms of which the RHI and other illusions are standardly framed. I offer three hypotheses for the source of our putative “sense of ownership”. The main body of the paper focuses on the third hypothesis, which is that judgments of ownership are grounded in the distinctive way that we experience the space of the body.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Hide ◽  
Y. Ito ◽  
N. Kuroda ◽  
M. Kanda ◽  
W. Teramoto

AbstractThis study investigates how the multisensory integration in body perception changes with increasing age, and whether it is associated with older adults’ risk of falling. For this, the rubber hand illusion (RHI) and rubber foot illusion (RFI) were used. Twenty-eight community-dwelling older adults and 25 university students were recruited. They viewed a rubber hand or foot that was stimulated in synchrony or asynchrony with their own hidden hand or foot. The illusion was assessed by using a questionnaire, and measuring the proprioceptive drift and latency. The Timed Up and Go Test was used to classify the older adults into lower and higher fall-risk groups. No difference was observed in the RHI between the younger and older adults. However, several differences were observed in the RFI. Specifically, the older adults with a lower fall-risk hardly experienced the illusion, whereas those with a higher fall-risk experienced it with a shorter latency and no weaker than the younger adults. These results suggest that in older adults, the mechanism of multisensory integration for constructing body perception can change depending on the stimulated body parts, and that the risk of falling is associated with multisensory integration.


Author(s):  
Bu S. Park ◽  
Sunder S. Rajan ◽  
Leonardo M. Angelone

We present numerical simulation results showing that high dielectric materials (HDMs) when placed between the human body model and the body coil significantly alter the electromagnetic field inside the body. The numerical simulation results show that the electromagnetic field (E, B, and SAR) within a region of interest (ROI) is concentrated (increased). In addition, the average electromagnetic fields decreased significantly outside the region of interest. The calculation results using a human body model and HDM of Barium Strontium Titanate (BST) show that the mean local SAR was decreased by about 56% (i.e., 18.7 vs. 8.2 W/kg) within the body model.


2019 ◽  
Vol 44 (3) ◽  
pp. 177-184 ◽  
Author(s):  
Merel Prikken ◽  
Anouk van der Weiden ◽  
Heleen Baalbergen ◽  
Manon H.J. Hillegers ◽  
René S. Kahn ◽  
...  

2018 ◽  
Vol 5 (5) ◽  
pp. 172170 ◽  
Author(s):  
Yuki Sato ◽  
Toshihiro Kawase ◽  
Kouji Takano ◽  
Charles Spence ◽  
Kenji Kansaku

Understanding how we consciously experience our bodies is a fundamental issue in cognitive neuroscience. Two fundamental components of this are the sense of body ownership (the experience of the body as one's own) and the sense of agency (the feeling of control over one's bodily actions). These constructs have been used to investigate the incorporation of prostheses. To date, however, no evidence has been provided showing whether representations of ownership and agency in amputees are altered when operating a robotic prosthesis. Here we investigated a robotic arm using myoelectric control, for which the user varied the joint position continuously, in a rubber hand illusion task. Fifteen able-bodied participants and three trans-radial amputees were instructed to contract their wrist flexors/extensors alternately, and to watch the robotic arm move. The sense of ownership in both groups was extended to the robotic arm when the wrists of the real and robotic arm were flexed/extended synchronously, with the effect being smaller when they moved in opposite directions. Both groups also experienced a sense of agency over the robotic arm. These results suggest that these experimental settings induced successful incorporation of the prosthesis, at least for the amputees who took part in the present study.


Sign in / Sign up

Export Citation Format

Share Document