scholarly journals Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring

Author(s):  
Xiangyu Ge ◽  
Jingzhe Wang ◽  
Jianli Ding ◽  
Xiaoyi Cao ◽  
Zipeng Zhang ◽  
...  

Soil moisture content (SMC) is an important factor that affects agricultural development in arid regions. Compared with the spaceborne remote sensing system, the unmanned aerial vehicle (UAV) has been widely used because of its stronger controllability and higher resolution. It also provides a more convenient method for monitoring SMC than normal measurement methods that includes field sampling and oven-drying techniques. However, research based on UAV hyperspectral data has not yet formed a standard procedure in arid regions. Therefore, a universal processing scheme is required. We hypothesized that combining pretreatments of UAV hyperspectral imagery under optimal indices and a set of field observations within a machine learning framework will yield a highly accurate estimate of SMC. Optimal 2D spectral indices act as indispensable variables and allow us to characterize a model’s SMC performance and spatial distribution. For this purpose, we used hyperspectral imagery and a total of 70 topsoil samples (0–10 cm) from the farmland ( 2.5 ×104 m2) of Fukang City, Xinjiang Uygur AutonomousRegion, China. The random forest (RF) method and extreme learning machine (ELM) were used to estimate the SMC using six methods of pretreatments combined with four optimal spectral indices. The validation accuracy of the estimated method clearly increased compared with that of linear models. The combination of pretreatments and indices by our assessment effectively eliminated the interference and the noises. Comparing two machine learning algorithms showed that the RF models were superior to the ELM models, and the best model was PIR (R2val = 0.907, RMSEP = 1.477 and RPD = 3.396). The SMC map predicted via the best scheme was highly similar to the SMC map measured. We conclude that combining preprocessed spectral indices and machine learning algorithms allows estimation of SMC with high accuracy (R2val = 0.907) via UAV hyperspectral imagery on a regional scale. Ultimately, our program might improve management and conservation strategies for agroecosystem systems in arid regions.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6926 ◽  
Author(s):  
Xiangyu Ge ◽  
Jingzhe Wang ◽  
Jianli Ding ◽  
Xiaoyi Cao ◽  
Zipeng Zhang ◽  
...  

Soil moisture content (SMC) is an important factor that affects agricultural development in arid regions. Compared with the space-borne remote sensing system, the unmanned aerial vehicle (UAV) has been widely used because of its stronger controllability and higher resolution. It also provides a more convenient method for monitoring SMC than normal measurement methods that includes field sampling and oven-drying techniques. However, research based on UAV hyperspectral data has not yet formed a standard procedure in arid regions. Therefore, a universal processing scheme is required. We hypothesized that combining pretreatments of UAV hyperspectral imagery under optimal indices and a set of field observations within a machine learning framework will yield a highly accurate estimate of SMC. Optimal 2D spectral indices act as indispensable variables and allow us to characterize a model’s SMC performance and spatial distribution. For this purpose, we used hyperspectral imagery and a total of 70 topsoil samples (0–10 cm) from the farmland (2.5 × 104 m2) of Fukang City, Xinjiang Uygur AutonomousRegion, China. The random forest (RF) method and extreme learning machine (ELM) were used to estimate the SMC using six methods of pretreatments combined with four optimal spectral indices. The validation accuracy of the estimated method clearly increased compared with that of linear models. The combination of pretreatments and indices by our assessment effectively eliminated the interference and the noises. Comparing two machine learning algorithms showed that the RF models were superior to the ELM models, and the best model was PIR (R2val = 0.907, RMSEP = 1.477, and RPD = 3.396). The SMC map predicted via the best scheme was highly similar to the SMC map measured. We conclude that combining preprocessed spectral indices and machine learning algorithms allows estimation of SMC with high accuracy (R2val = 0.907) via UAV hyperspectral imagery on a regional scale. Ultimately, our program might improve management and conservation strategies for agroecosystem systems in arid regions.


2019 ◽  
Author(s):  
Xiangyu Ge ◽  
Jingzhe Wang ◽  
Jianli Ding ◽  
Xiaoyi Cao ◽  
Zipeng Zhang ◽  
...  

Soil moisture content (SMC) is an important factor that affects agricultural development in arid regions. Compared with the spaceborne remote sensing system, the unmanned aerial vehicle (UAV) has been widely used because of its stronger controllability and higher resolution. It also provides a more convenient method for monitoring SMC than normal measurement methods that includes field sampling and oven-drying techniques. However, research based on UAV hyperspectral data has not yet formed a standard procedure in arid regions. Therefore, a universal processing scheme is required. We hypothesized that combining pretreatments of UAV hyperspectral imagery under optimal indices and a set of field observations within a machine learning framework will yield a highly accurate estimate of SMC. Optimal 2D spectral indices act as indispensable variables and allow us to characterize a model’s SMC performance and spatial distribution. For this purpose, we used hyperspectral imagery and a total of 70 topsoil samples (0–10 cm) from the farmland ( 2.5 ×104 m2) of Fukang City, Xinjiang Uygur AutonomousRegion, China. The random forest (RF) method and extreme learning machine (ELM) were used to estimate the SMC using six methods of pretreatments combined with four optimal spectral indices. The validation accuracy of the estimated method clearly increased compared with that of linear models. The combination of pretreatments and indices by our assessment effectively eliminated the interference and the noises. Comparing two machine learning algorithms showed that the RF models were superior to the ELM models, and the best model was PIR (R2val = 0.907, RMSEP = 1.477 and RPD = 3.396). The SMC map predicted via the best scheme was highly similar to the SMC map measured. We conclude that combining preprocessed spectral indices and machine learning algorithms allows estimation of SMC with high accuracy (R2val = 0.907) via UAV hyperspectral imagery on a regional scale. Ultimately, our program might improve management and conservation strategies for agroecosystem systems in arid regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rehman S. Eon ◽  
Charles M. Bachmann

AbstractThe advent of remote sensing from unmanned aerial systems (UAS) has opened the door to more affordable and effective methods of imaging and mapping of surface geophysical properties with many important applications in areas such as coastal zone management, ecology, agriculture, and defense. We describe a study to validate and improve soil moisture content retrieval and mapping from hyperspectral imagery collected by a UAS system. Our approach uses a recently developed model known as the multilayer radiative transfer model of soil reflectance (MARMIT). MARMIT partitions contributions due to water and the sediment surface into equivalent but separate layers and describes these layers using an equivalent slab model formalism. The model water layer thickness along with the fraction of wet surface become parameters that must be optimized in a calibration step, with extinction due to water absorption being applied in the model based on equivalent water layer thickness, while transmission and reflection coefficients follow the Fresnel formalism. In this work, we evaluate the model in both field settings, using UAS hyperspectral imagery, and laboratory settings, using hyperspectral spectra obtained with a goniometer. Sediment samples obtained from four different field sites representing disparate environmental settings comprised the laboratory analysis while field validation used hyperspectral UAS imagery and coordinated ground truth obtained on a barrier island shore during field campaigns in 2018 and 2019. Analysis of the most significant wavelengths for retrieval indicate a number of different wavelengths in the short-wave infra-red (SWIR) that provide accurate fits to measured soil moisture content in the laboratory with normalized root mean square error (NRMSE)< 0.145, while independent evaluation from sequestered test data from the hyperspectral UAS imagery obtained during the field campaign obtained an average NRMSE = 0.169 and median NRMSE = 0.152 in a bootstrap analysis.


2021 ◽  
Vol 13 (8) ◽  
pp. 1562
Author(s):  
Xiangyu Ge ◽  
Jianli Ding ◽  
Xiuliang Jin ◽  
Jingzhe Wang ◽  
Xiangyue Chen ◽  
...  

Unmanned aerial vehicle (UAV)-based hyperspectral remote sensing is an important monitoring technology for the soil moisture content (SMC) of agroecological systems in arid regions. This technology develops precision farming and agricultural informatization. However, hyperspectral data are generally used in data mining. In this study, UAV-based hyperspectral imaging data with a resolution o 4 cm and totaling 70 soil samples (0–10 cm) were collected from farmland (2.5 × 104 m2) near Fukang City, Xinjiang Uygur Autonomous Region, China. Four estimation strategies were tested: the original image (strategy I), first- and second-order derivative methods (strategy II), the fractional-order derivative (FOD) technique (strategy III), and the optimal fractional order combined with the optimal multiband indices (strategy IV). These strategies were based on the eXtreme Gradient Boost (XGBoost) algorithm, with the aim of building the best estimation model for agricultural SMC in arid regions. The results demonstrated that FOD technology could effectively mine information (with an absolute maximum correlation coefficient of 0.768). By comparison, strategy IV yielded the best estimates out of the methods tested (R2val = 0.921, RMSEP = 1.943, and RPD = 2.736) for the SMC. The model derived from the order of 0.4 within strategy IV worked relatively well among the different derivative methods (strategy I, II, and III). In conclusion, the combination of FOD technology and the optimal multiband indices generated a highly accurate model within the XGBoost algorithm for SMC estimation. This research provided a promising data mining approach for UAV-based hyperspectral imaging data.


Author(s):  
Vinicius Augusto Oliveira ◽  
André Ferreira Rodrigues ◽  
Marco Antônio Vieira Morais ◽  
Marcela de Castro Nunes Santos Terra ◽  
Li Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document