New empirical equation to estimate the soil moisture content based on thermal properties using machine learning techniques

2020 ◽  
Vol 13 (10) ◽  
Author(s):  
Oluseun A. Sanuade ◽  
Amjed M. Hassan ◽  
Adesoji O. Akanji ◽  
Abayomi A. Olaojo ◽  
Michael A. Oladunjoye ◽  
...  
Author(s):  
Swathi Gorthi ◽  
Huifang Dou

This paper provides a survey on different kinds of prediction models developed for the estimation of soil moisture content of an area, using empirical information including meteorological and remotely sensed data. The different models employed extend over a wide range of machine learning techniques starting from Basic Linear Regression models through models based on Bayesian framework, Decision tree learning and Recursive partitioning, to the modern non-linear statistical data modeling tools like Artificial Neural Networks. The fundamental mathematical backgrounds, pros and cons, prediction results and efficiencies of all the models are discussed.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6926 ◽  
Author(s):  
Xiangyu Ge ◽  
Jingzhe Wang ◽  
Jianli Ding ◽  
Xiaoyi Cao ◽  
Zipeng Zhang ◽  
...  

Soil moisture content (SMC) is an important factor that affects agricultural development in arid regions. Compared with the space-borne remote sensing system, the unmanned aerial vehicle (UAV) has been widely used because of its stronger controllability and higher resolution. It also provides a more convenient method for monitoring SMC than normal measurement methods that includes field sampling and oven-drying techniques. However, research based on UAV hyperspectral data has not yet formed a standard procedure in arid regions. Therefore, a universal processing scheme is required. We hypothesized that combining pretreatments of UAV hyperspectral imagery under optimal indices and a set of field observations within a machine learning framework will yield a highly accurate estimate of SMC. Optimal 2D spectral indices act as indispensable variables and allow us to characterize a model’s SMC performance and spatial distribution. For this purpose, we used hyperspectral imagery and a total of 70 topsoil samples (0–10 cm) from the farmland (2.5 × 104 m2) of Fukang City, Xinjiang Uygur AutonomousRegion, China. The random forest (RF) method and extreme learning machine (ELM) were used to estimate the SMC using six methods of pretreatments combined with four optimal spectral indices. The validation accuracy of the estimated method clearly increased compared with that of linear models. The combination of pretreatments and indices by our assessment effectively eliminated the interference and the noises. Comparing two machine learning algorithms showed that the RF models were superior to the ELM models, and the best model was PIR (R2val = 0.907, RMSEP = 1.477, and RPD = 3.396). The SMC map predicted via the best scheme was highly similar to the SMC map measured. We conclude that combining preprocessed spectral indices and machine learning algorithms allows estimation of SMC with high accuracy (R2val = 0.907) via UAV hyperspectral imagery on a regional scale. Ultimately, our program might improve management and conservation strategies for agroecosystem systems in arid regions.


2021 ◽  
Vol 13 (11) ◽  
pp. 2099
Author(s):  
Felix Greifeneder ◽  
Claudia Notarnicola ◽  
Wolfgang Wagner

Due to its relation to the Earth’s climate and weather and phenomena like drought, flooding, or landslides, knowledge of the soil moisture content is valuable to many scientific and professional users. Remote-sensing offers the unique possibility for continuous measurements of this variable. Especially for agriculture, there is a strong demand for high spatial resolution mapping. However, operationally available soil moisture products exist with medium to coarse spatial resolution only (≥1 km). This study introduces a machine learning (ML)—based approach for the high spatial resolution (50 m) mapping of soil moisture based on the integration of Landsat-8 optical and thermal images, Copernicus Sentinel-1 C-Band SAR images, and modelled data, executable in the Google Earth Engine. The novelty of this approach lies in applying an entirely data-driven ML concept for global estimation of the surface soil moisture content. Globally distributed in situ data from the International Soil Moisture Network acted as an input for model training. Based on the independent validation dataset, the resulting overall estimation accuracy, in terms of Root-Mean-Squared-Error and R², was 0.04 m3·m−3 and 0.81, respectively. Beyond the retrieval model itself, this article introduces a framework for collecting training data and a stand-alone Python package for soil moisture mapping. The Google Earth Engine Python API facilitates the execution of data collection and retrieval which is entirely cloud-based. For soil moisture retrieval, it eliminates the requirement to download or preprocess any input datasets.


Sign in / Sign up

Export Citation Format

Share Document