scholarly journals Phylogenetic evidence suggests a later origin of the DRD2l and DRD4rs dopamine receptor gene lineages

Author(s):  
Juan C Opazo ◽  
Kattina Zavala ◽  
Soledad Miranda-Rottmann ◽  
Roberto Araya

Dopamine receptors are integral membrane proteins whose endogenous ligand is dopamine. They play a fundamental role in the central nervous system and dysfunction of dopaminergic neurotransmission is responsible for the generation of a variety of neuropsychiatric disorders. From an evolutionary standpoint, phylogenetic relationships among the DRD1 class of dopamine receptors are still a matter of debate as in the literature different tree topologies have been proposed. In contrast, phylogenetic relationships among the DRD2 group of receptors are well understood. Understanding the time of origin of the different dopamine receptors is also an issue that needs further study, especially for the genes that have restricted phyletic distributions (e.g. DRD2l and DRD4rs). Thus, the goal of this study was to investigate the evolution of dopamine receptors, with emphasis on shedding light on the phylogenetic relationships among the D1 class of dopamine receptors and the time of origin of the DRD2l and DRD4rs gene lineages. Our results recovered the monophyly of the two groups of dopamine receptors. Within the DRD1 group the monophyly of each paralog was recovered with strong support, and phylogenetic relationships among them were well resolved. Within the DRD1 class of dopamine receptors we recovered the sister group relationship between the DRD1C and DRD1E, and this clade was recovered sister to a cyclostome sequence. The DRD1 clade was recovered sister to the aforementioned clade, and the group containing DRD5 receptors was sister to all other DRD1 paralogs. In agreement with the literature, among the DRD2 class of receptors, DRD2 was recovered sister to DRD3, whereas DRD4 was sister to the DRD2/DRD3 clade. According to our phylogenetic tree, the DRD2l and DRD4rs gene lineages would have originated in the ancestor of gnathostomes between 615 and 473 mya. Conservation of sequences required for dopaminergic neurotransmission and small changes in regulatory regions suggest a functional refinement of the dopaminergic pathways along evolution.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4593 ◽  
Author(s):  
Juan C. Opazo ◽  
Kattina Zavala ◽  
Soledad Miranda-Rottmann ◽  
Roberto Araya

Dopamine receptors are integral membrane proteins whose endogenous ligand is dopamine. They play a fundamental role in the central nervous system and dysfunction of dopaminergic neurotransmission is responsible for the generation of a variety of neuropsychiatric disorders. From an evolutionary standpoint, phylogenetic relationships among the DRD1 class of dopamine receptors are still a matter of debate as in the literature different tree topologies have been proposed. In contrast, phylogenetic relationships among the DRD2 group of receptors are well understood. Understanding the time of origin of the different dopamine receptors is also an issue that needs further study, especially for the genes that have restricted phyletic distributions (e.g., DRD2l and DRD4rs). Thus, the goal of this study was to investigate the evolution of dopamine receptors, with emphasis on shedding light on the phylogenetic relationships among the D1 class of dopamine receptors and the time of origin of the DRD2l and DRD4rs gene lineages. Our results recovered the monophyly of the two groups of dopamine receptors. Within the DRD1 group the monophyly of each paralog was recovered with strong support, and phylogenetic relationships among them were well resolved. Within the DRD1 class of dopamine receptors we recovered the sister group relationship between the DRD1C and DRD1E, and this clade was recovered sister to a cyclostome sequence. The DRD1 clade was recovered sister to the aforementioned clade, and the group containing DRD5 receptors was sister to all other DRD1 paralogs. In agreement with the literature, among the DRD2 class of receptors, DRD2 was recovered sister to DRD3, whereas DRD4 was sister to the DRD2/DRD3 clade. According to our phylogenetic tree, the DRD2l and DRD4rs gene lineages would have originated in the ancestor of gnathostomes between 615 and 473 mya. Conservation of sequences required for dopaminergic neurotransmission and small changes in regulatory regions suggest a functional refinement of the dopaminergic pathways along evolution.


2018 ◽  
Author(s):  
Juan C Opazo ◽  
Kattina Zavala ◽  
Soledad Miranda-Rottmann ◽  
Roberto Araya

Dopamine receptors are integral membrane proteins whose endogenous ligand is dopamine. They play a fundamental role in the central nervous system and dysfunction of dopaminergic neurotransmission is responsible for the generation of a variety of neuropsychiatric disorders. From an evolutionary standpoint, phylogenetic relationships among the DRD1 class of dopamine receptors are still a matter of debate as in the literature different tree topologies have been proposed. In contrast, phylogenetic relationships among the DRD2 group of receptors are well understood. Understanding the time of origin of the different dopamine receptors is also an issue that needs further study, especially for the genes that have restricted phyletic distributions (e.g. DRD2l and DRD4rs). Thus, the goal of this study was to investigate the evolution of dopamine receptors, with emphasis on shedding light on the phylogenetic relationships among the D1 class of dopamine receptors and the time of origin of the DRD2l and DRD4rs gene lineages. Our results recovered the monophyly of the two groups of dopamine receptors. Within the DRD1 group the monophyly of each paralog was recovered with strong support, and phylogenetic relationships among them were well resolved. Within the DRD1 class of dopamine receptors we recovered the sister group relationship between the DRD1C and DRD1E, and this clade was recovered sister to a cyclostome sequence. The DRD1 clade was recovered sister to the aforementioned clade, and the group containing DRD5 receptors was sister to all other DRD1 paralogs. In agreement with the literature, among the DRD2 class of receptors, DRD2 was recovered sister to DRD3, whereas DRD4 was sister to the DRD2/DRD3 clade. According to our phylogenetic tree, the DRD2l and DRD4rs gene lineages would have originated in the ancestor of gnathostomes between 615 and 473 mya. Conservation of sequences required for dopaminergic neurotransmission and small changes in regulatory regions suggest a functional refinement of the dopaminergic pathways along evolution.


Fossil Record ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Gloria Arratia ◽  
Hans-Peter Schultze ◽  
Helmut Tischlinger

Abstract. A complete morphological description, as preservation permits, is provided for a new Late Jurassic fish species (Tharsis elleri) together with a revision and comparison of some morphological features of Tharsis dubius, one of the most common species from the Solnhofen limestone, southern Germany. An emended diagnosis of the genus Tharsis – now including two species – is presented. The new species is characterized by a combination of morphological characters, such as the presence of a complete sclerotic ring formed by two bones placed anterior and posterior to the eye, a moderately short lower jaw with quadrate-mandibular articulation below the anterior half of the orbit, caudal vertebrae with neural and haemal arches fused to their respective vertebral centrum, and parapophyses fused to their respective centrum. A phylogenetic analysis based on 198 characters and 43 taxa is performed. Following the phylogenetic hypothesis, the sister-group relationship Ascalaboidae plus more advanced teleosts stands above the node of Leptolepis coryphaenoides. Both nodes have strong support among teleosts. The results confirm the inclusion of Ascalabos, Ebertichthys and Tharsis as members of this extinct family. Tharsis elleri n. sp. (LSID urn:lsid:zoobank.org:act:6434E6F5-2DDD-48CF-A2B1-827495FE46E6, date: 13 December 2018) is so far restricted to one Upper Jurassic German locality – Wegscheid Quarry near Schernfeld, Eichstätt – whereas Tharsis dubius is known not only from Wegscheid Quarry, but also from different localities in the Upper Jurassic of Bavaria, Germany, and Cerin in France.


2017 ◽  
Author(s):  
Christopher E. Laumer ◽  
Harald Gruber-Vodicka ◽  
Michael G. Hadfield ◽  
Vicki B. Pearse ◽  
Ana Riesgo ◽  
...  

AbstractThe phylogenetic placement of the morphologically simple placozoans is crucial to understanding the evolution of complex animal traits. Here, we examine the influence of adding new genomes from placozoans to a large dataset designed to study the deepest splits in the animal phylogeny. Using site-heterogeneous substitution models, we show that it is possible to obtain strong support, in both amino acid and reduced-alphabet matrices, for either a sister-group relationship between Cnidaria and Placozoa, or for Cnidaria and Bilateria (=Planulozoa), also seen in most published work to date, depending on the orthologues selected to construct the matrix. We demonstrate that a majority of genes show evidence of compositional heterogeneity, and that the support for Planulozoa can be assigned to this source of systematic error. In interpreting this placozoan-cnidarian clade, we caution against a peremptory reading of placozoans as secondarily reduced forms of little relevance to broader discussions of early animal evolution.


Botany ◽  
2008 ◽  
Vol 86 (7) ◽  
pp. 719-731 ◽  
Author(s):  
Jeffery M. Saarela ◽  
Peter J. Prentis ◽  
Hardeep S. Rai ◽  
Sean W. Graham

To characterize higher-order phylogenetic relationships among the five families of Commelinales, we surveyed multiple plastid loci from exemplar taxa sampled broadly from the order, and from other major monocot lineages. Phylogenetic inferences in Commelinales using parsimony and likelihood methods are congruent, and we find strong support for most aspects of higher-order relationship in the order. We obtain moderately strong support for the local placement of Philydraceae, a family whose position has proven particularly difficult to infer in previous studies. Commelinaceae and Hanguanaceae are sister taxa, and together they are the sister group of a clade consisting of Haemodoraceae, Philydraceae, and Pontederiaceae; Haemodoraceae and Pontederiaceae are also sister taxa. Our sampling of Philydraceae includes all three or four genera in the family; we identify Philydrella as the sister group of a Helmholtzia–Philydrum clade, a resolution that is potentially consistent with several aspects of morphology.


2020 ◽  
Vol 3 (4) ◽  
pp. 352-356
Author(s):  
DANY AZAR ◽  
SIBELLE MAKSOUD

Psychodidae Newman, 1834 is a large family of small, hairy nematoceran dipterans, comprising more than 2,600 described extant species. It is currently subdivided into seven subfamilies: Bruchomyiinae Alexander, 1920, Horaiellinae Enderlein, 1936, Phlebotominae Rondani, 1840, Psychodinae Newman, 1834, Sycoracinae Jung, 1954, Trichomyiinae Tonnoir, 1922, and the fossil subfamily Protopsychodinae Stebner et al., 2015. Some authors consider the group to consist of two families, i.e., Psychodidae and Phlebotomidae (Williams, 1993; Azar et al., 1999). This fact is founded only on the hematophagous and medically important aspects of the phlebotomines, nevertheless this arrangement is unfounded, because the phylogenetic relationships between the psychodid subfamilies remain unresolved, even if there is a possible sister-group relationship between the Phlebotominae and Psychodinae (Curler & Moulton, 2012). We consider recognizing phlebotomines as a separate family would necessitate also giving separate familial status to all the currently recognized subfamilies, which is not adopted here.


2009 ◽  
Vol 34 (1) ◽  
pp. 162-172 ◽  
Author(s):  
Katherine G. Mathews ◽  
Niall Dunne ◽  
Emily York ◽  
Lena Struwe

A phylogenetic study and taxonomic revision of the four currently accepted species of Bartonia (Gentianaceae, subtribe Swertiinae) were conducted in order to test species boundaries and interspecific relationships. Species boundaries were examined based on measurements of key quantitative and qualitative morphological characters as given in the original descriptions. Phylogenetic analyses were performed using molecular data from the nuclear internal transcribed spacer region and chloroplast DNA (trnL intron through the trnL-F spacer), separately and combined using parsimony and Bayesian methodologies, incorporating outgroups from subtribes Swertiinae and Gentianinae. The morphological study revealed that characters of one species, B. texana, represent a subset of the morphological variation found within B. paniculata, but that B. paniculata, B. verna, and B. virginica could all be separated from one another. The molecular phylogenetic analyses all found B. texana to nest in a clade with the two recognized subspecies of B. paniculata (subsp. paniculata and subsp. iodandra), making the latter paraphyletic. Bartonia texana is here reduced to subspecific rank, as Bartonia paniculata subsp. texana. Also, the phylogenetic analyses showed strong support for a sister group relationship between B. verna and B. virginica, as opposed to between B. paniculata and B. virginica as has been previously suggested.


Botany ◽  
2008 ◽  
Vol 86 (7) ◽  
pp. 658-669 ◽  
Author(s):  
Hardeep S. Rai ◽  
Patrick A. Reeves ◽  
Rod Peakall ◽  
Richard G. Olmstead ◽  
Sean W. Graham

We reconstructed the broad backbone of conifer phylogeny from a survey of 15–17 plastid loci and associated noncoding regions from exemplar conifer species. Parsimony and likelihood analyses recover the same higher-order relationships, and we find strong support for most of the deep splits in conifer phylogeny, including those within our two most heavily sampled families, Araucariaceae and Cupressaceae. Our findings are broadly congruent with other recent studies, and are inferred with comparable or improved bootstrap support. The deepest phylogenetic split in conifers is inferred to be between Pinaceae and all other conifers (Cupressophyta). Our current gene and taxon sampling does not support a relationship between Pinaceae and Gnetales, observed in some published studies. Within the Cupressophyta clade, we infer well-supported relationships among Cephalotaxaceae, Cupressaceae, Sciadopityaceae, and Taxaceae. Our data support recent moves to recognize Cephalotaxus under Taxaceae, and we find strong support for a sister-group relationship between the two predominantly southern hemisphere conifer families, Araucariaceae and Podocarpaceae. A local hotspot of indel evolution shared by the latter two conifer families is identified in the coding portion of one of the plastid ribosomal protein genes. The removal of the most rapidly evolving plastid characters, as defined using a likelihood-based classification of substitution rates for the taxa considered here, is shown to have little to no effect on our inferences of higher-order conifer relationships.


1990 ◽  
Vol 68 (3) ◽  
pp. 556-578 ◽  
Author(s):  
Gregory W. Courtney

The cuticular structure of larval mountain midges (Diptera: Deuterophlebiidae) is described, with emphasis on cranial and mouthpart morphology. Homologies are suggested for musculature and external features of the head capsule. External morphology of the thorax and abdomen is described, and a system for deuterophlebiid larval chaetotaxy is presented. Also included is a discussion of the feeding behaviour of deuterophlebiid and blepharicerid larvae, and how differing morphological characteristics influence mechanisms of food acquisition. Larval morphology of the Deuterophlebiidae and other Nematocera provides support for (i) a sister-group relationship between the Deuterophlebiidae and Blephariceridae; (ii) a monophyletic Blephariceromorpha (sensu Wood and Borkent) composed of the Nymphomyiidae + (Deuterophlebiidae + Blephariceridae); and (iii) a sister-group relationship between the Blephariceromorpha and Psychodomorpha (sensu Wood and Borkent).


2007 ◽  
Vol 55 (3) ◽  
pp. 197 ◽  
Author(s):  
Paul M. Oliver ◽  
Mark N. Hutchinson ◽  
Steven J. B. Cooper

Diplodactylid geckos offer a model system for investigating the biogeographic history of Australia and adaptive radiations in the arid zone, but there is considerable uncertainty in the systematics of several key genera. We used sequence data from mitochondrial DNA to carry out a comprehensive analysis of phylogenetic relationships of geckos in the genus Diplodactylus. Parsimony and Bayesian analyses were highly concordant and allocated all species to one of two monophyletic clades, one comprising the species placed in the vittatus and conspicillatus species groups, the other comprising species placed in the stenodactylus and steindachneri species groups, plus D. byrnei, formerly in the vittatus group. The distinctness of these two clades is supported by external morphology of the digits, body and limb proportions, and osteology of the bones in the orbital region, and we use these characters to formally define the two clades as genera. We revive and expand the genus Lucasium for D. byrnei, D. steindachneri and the stenodactylus group, with the other species staying in a redefined Diplodactylus. The monotypic Rhynchoedura is distinct from Lucasium, although the Bayesian mtDNA analysis (but not parsimony) gives some support for a sister-group relationship between Lucasium and Rhynchoedura. Molecular data suggest that each of these clades represents a distinct radiation into semiarid and arid terrestrial habitats during the mid-Tertiary, well before the hypothesised Pliocene onset of major aridification.


Sign in / Sign up

Export Citation Format

Share Document