scholarly journals Chemically modified plastic tube for high volume removal and collection of circulating tumor cells

Author(s):  
Angelo Gaitas ◽  
Gwangseong Kim

In this preliminary effort, we use a commercially available and chemically modified tube to selectively capture circulating tumor cells (CTCs) from the blood stream by immobilizing human anti-EpCAM antibodies on the tube's interior surface. We describe the steps required to modify a tube into a cancer cell capturing device. Using these simple modifications, at this proof-of-concept stage of development, we were able to capture about 85% of cancer cells from suspension and 44% of cancer cells from spiked whole blood, the capture percentage being dependent on the tube's length and the number of cancer cells present. Previous work by other researchers has focused on extracting small blood volumes and capturing CTCs with complicated micro-fluidic devices for diagnostic purposes. In addition, prior results of other researchers point to a possible reduction in metastasis achieved by removing CTCs from the bloodstream. We believe that with the utilization of appropriate tube lengths and procedures, we can ensure capture and removal of nearly the entire CTC population in whole blood. Following whole blood flow through the tube, the tube can be trypsinized to release the captured live CTCs for further analysis and testing.


2015 ◽  
Author(s):  
Angelo Gaitas ◽  
Gwangseong Kim

In this preliminary effort, we use a commercially available and chemically modified tube to selectively capture circulating tumor cells (CTCs) from the blood stream by immobilizing human anti-EpCAM antibodies on the tube's interior surface. We describe the steps required to modify a tube into a cancer cell capturing device. Using these simple modifications, at this proof-of-concept stage of development, we were able to capture about 85% of cancer cells from suspension and 44% of cancer cells from spiked whole blood, the capture percentage being dependent on the tube's length and the number of cancer cells present. Previous work by other researchers has focused on extracting small blood volumes and capturing CTCs with complicated micro-fluidic devices for diagnostic purposes. In addition, prior results of other researchers point to a possible reduction in metastasis achieved by removing CTCs from the bloodstream. We believe that with the utilization of appropriate tube lengths and procedures, we can ensure capture and removal of nearly the entire CTC population in whole blood. Following whole blood flow through the tube, the tube can be trypsinized to release the captured live CTCs for further analysis and testing.





2021 ◽  
Author(s):  
Jeff Darabi ◽  
Joseph Schober

Abstract Studies have shown that primary tumor sites begin shedding cancerous cells into peripheral blood at early stages of cancer, and the presence and frequency of circulating tumor cells (CTCs) in blood is directly proportional to disease progression. The challenge is that the concentration of the CTCs in peripheral blood may be extremely low. In the past few years, several microfluidic-based concepts have been investigated to isolate CTCs from whole blood. However, these devices are generally hampered by complex fabrication processes and very low volumetric throughputs, which may not be practical for rapid clinical applications. This paper presents a high-performance yet simple magnetophoretic microfluidic chip for the enrichment and on-chip analysis of rare CTCs from blood. Microscopic and flow cytometric assays developed for selection of cancer cell lines, selection of monoclonal antibodies, and optimization of bead coupling are discussed. Additionally, on-chip characterization of rare cancer cells using high resolution immunofluorescence microscopy and modeling results for prediction of CTC capture length are presented. The device has the ability to interface directly with on-chip pre and post processing modules such as mixing, incubation, and automated image analysis systems. These features will enable us to isolate rare cancer cells from whole blood and detect them on the chip with subcellular resolution.



Lab on a Chip ◽  
2021 ◽  
Author(s):  
Kaylee Judith Smith ◽  
Jessica Antoinette Jana ◽  
Anna Kaehr ◽  
Emma Purcell ◽  
Tyler Opdycke ◽  
...  

Circulating Tumor Cells (CTCs) are extremely rare cells shed from tumors into the blood stream. These cells can provide valuable information about their tumor of origin and direct treatment decisions...



2012 ◽  
Vol 102 (3) ◽  
pp. 589a
Author(s):  
Gregory L. Futia ◽  
Allison G. Caster ◽  
Omid Masihzadeh ◽  
Kian Behbakht ◽  
Emily A. Gibson


Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 481 ◽  
Author(s):  
Jusin Lee ◽  
Onejae Sul ◽  
Seung-Beck Lee

Based on their high clinical potential, the isolation and enrichment of rare circulating tumor cells (CTCs) from peripheral blood cells has been widely investigated. There have been technical challenges with CTC separation methods using solely cancer-specific surface molecules or just using physical properties of CTCs, as they may suffer from heterogeneity or lack of specificity from overlapping physical characteristics with leukocytes. Here, we integrated an immunomagnetic-based negative enrichment method that utilizes magnetic beads attached to leukocyte-specific surface antigens, with a physical separation method that utilizes the distinct size and deformability of CTCs. By manipulating the pressure distribution throughout the device and balancing the drag and magnetic forces acting on the magnetically labeled white blood cells (WBCs), the sequential physical and magnetophoretic separations were optimized to isolate intact cancer cells, regardless of heterogeneity from whole blood. Using a breast cancer cell line in whole blood, we achieved 100% separation efficiency for cancer cells and an average of 97.2% for WBCs, which resulted in a 93.3% average separation purity. The experimental results demonstrated that our microfluidic device can be a promising candidate for liquid biopsy and can be a vital tool for aiding future cancer research.



Sign in / Sign up

Export Citation Format

Share Document