scholarly journals An Estimation of Transport Energy Demand in Turkey via Artificial Neural Networks

2019 ◽  
Vol 31 (2) ◽  
pp. 151-161 ◽  
Author(s):  
Muhammed Yasin Çodur ◽  
Ahmet Ünal

The transportation sector accounts for nearly 19% of total energy consumption in Turkey, where energy demand increases rapidly depending on the economic and human population growth and the increasing number of motor vehicles. Hence, the estimation of future energy demand is of great importance to design, plan and use the transportation systems more efficiently, for which a reliable quantitative estimation is of primary concern. However, the estimation of transport energy demand is a complex task, since various model parameters are interacting with each other. In this study, artificial neural networks were used to estimate the energy demand in transportation sector in Turkey. Gross domestic product, oil prices, population, vehicle-km, ton-km and passenger-km were selected as parameters by considering the data for the period from 1975 to 2016. Seven models in total were created and analyzed. The best yielding model with the parameters of oil price, population and motor vehicle-km was determined to have the lowest error and the highest R2 values. This model was selected to estimate transport energy demand for the years 2020, 2023, 2025 and 2030.

2021 ◽  
Vol 13 (8) ◽  
pp. 4572
Author(s):  
Jiří David ◽  
Pavel Brom ◽  
František Starý ◽  
Josef Bradáč ◽  
Vojtěch Dynybyl

This article deals with the use of neural networks for estimation of deceleration model parameters for the adaptive cruise control unit. The article describes the basic functionality of adaptive cruise control and creates a mathematical model of braking, which is one of the basic functions of adaptive cruise control. Furthermore, an analysis of the influences acting in the braking process is performed, the most significant of which are used in the design of deceleration prediction for the adaptive cruise control unit using neural networks. Such a connection using artificial neural networks using modern sensors can be another step towards full vehicle autonomy. The advantage of this approach is the original use of neural networks, which refines the determination of the deceleration value of the vehicle in front of a static or dynamic obstacle, while including a number of influences that affect the braking process and thus increase driving safety.


2013 ◽  
Vol 24 (1) ◽  
pp. 27-34
Author(s):  
G. Manuel ◽  
J.H.C. Pretorius

In the 1980s a renewed interest in artificial neural networks (ANN) has led to a wide range of applications which included demand forecasting. ANN demand forecasting algorithms were found to be preferable over parametric or also referred to as statistical based techniques. For an ANN demand forecasting algorithm, the demand may be stochastic or deterministic, linear or nonlinear. Comparative studies conducted on the two broad streams of demand forecasting methodologies, namely artificial intelligence methods and statistical methods has revealed that AI methods tend to hide the complexities of correlation analysis. In parametric methods, correlation is found by means of sometimes difficult and rigorous mathematics. Most statistical methods extract and correlate various demand elements which are usually broadly classed into weather and non-weather variables. Several models account for noise and random factors and suggest optimization techniques specific to certain model parameters. However, for an ANN algorithm, the identification of input and output vectors is critical. Predicting the future demand is conducted by observing previous demand values and how underlying factors influence the overall demand. Trend analyses are conducted on these influential variables and a medium and long term forecast model is derived. In order to perform an accurate forecast, the changes in the demand have to be defined in terms of how these input vectors correlate to the final demand. The elements of the input vectors have to be identifiable and quantifiable. This paper proposes a method known as relevance trees to identify critical elements of the input vector. The case study is of a rapid railway operator, namely the Gautrain.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4040
Author(s):  
Jamer Jiménez Mares ◽  
Loraine Navarro ◽  
Christian G. Quintero M. ◽  
Mauricio Pardo

The electrical sector needs to study how energy demand changes to plan the maintenance and purchase of energy assets properly. Prediction studies for energy demand require a high level of reliability since a deviation in the forecasting demand could affect operation costs. This paper proposed a short-term forecasting energy demand methodology based on hierarchical clustering using Dynamic Time Warp as a similarity measure integrated with Artificial Neural Networks. Clustering was used to build the typical curve for each type of day, while Artificial Neural Networks handled the weather sensibility to correct a preliminary forecasting curve obtained in the clustering stage. A statistical analysis was carried out to identify those significant factors in the prediction model of energy demand. The performance of this proposed model was measured through the Mean Absolute Percentage Error (MAPE). The experimental results show that the three-stage methodology was able to improve the MAPE, reaching values as good as 2%.


2019 ◽  
Vol 14 (2) ◽  
pp. 285-315 ◽  
Author(s):  
Emmanuel Bannor B. ◽  
Alex O. Acheampong

Purpose This paper aims to use artificial neural networks to develop models for forecasting energy demand for Australia, China, France, India and the USA. Design/methodology/approach The study used quarterly data that span over the period of 1980Q1-2015Q4 to develop and validate the models. Eight input parameters were used for modeling the demand for energy. Hyperparameter optimization was performed to determine the ideal parameters for configuring each country’s model. To ensure stable forecasts, a repeated evaluation approach was used. After several iterations, the optimal models for each country were selected based on predefined criteria. A multi-layer perceptron with a back-propagation algorithm was used for building each model. Findings The results suggest that the validated models have developed high generalizing capabilities with insignificant forecasting deviations. The model for Australia, China, France, India and the USA attained high coefficients of determination of 0.981, 0.9837, 0.9425, 0.9137 and 0.9756, respectively. The results from the partial rank correlation coefficient further reveal that economic growth has the highest sensitivity weight on energy demand in Australia, France and the USA while industrialization has the highest sensitivity weight on energy demand in China. Trade openness has the highest sensitivity weight on energy demand in India. Originality/value This study incorporates other variables such as financial development, foreign direct investment, trade openness, industrialization and urbanization, which are found to have an important effect on energy demand in the model to prevent underestimation of the actual energy demand. Sensitivity analysis is conducted to determine the most influential variables. The study further deploys the models for hands-on predictions of energy demand.


2020 ◽  
Vol 10 (24) ◽  
pp. 9110 ◽  
Author(s):  
José Luis Olazagoitia ◽  
Jesus Angel Perez ◽  
Francisco Badea

Accurate modeling of tire characteristics is one of the most challenging tasks. Many mathematical models can be used to fit measured data. Identification of the parameters of these models usually relies on least squares optimization techniques. Different researchers have shown that the proper selection of an initial set of parameters is key to obtain a successful fitting. Besides, the mathematical process to identify the right parameters is, in some cases, quite time-consuming and not adequate for fast computing. This paper investigates the possibility of using Artificial Neural Networks (ANN) to reliably identify tire model parameters. In this case, the Pacejka’s “Magic Formula” has been chosen for the identification due to its complex mathematical form which, in principle, could result in a more difficult learning than other formulations. The proposed methodology is based on the creation of a sufficiently large training dataset, without errors, by randomly choosing the MF parameters within a range compatible with reality. The results obtained in this paper suggest that the use of ANN to directly identify parameters in tire models for real test data is possible without the need of complicated cost functions, iterative fitting or initial iteration point definition. The errors in the identification are normally very low for every parameter and the fitting problem time is reduced to a few milliseconds for any new given data set, which makes this methodology very appropriate to be used in applications where the computing time needs to be reduced to a minimum.


Sign in / Sign up

Export Citation Format

Share Document