Solving the Climate Problem

Author(s):  
Geoffrey Heal

Ozone depletion and acid rain are problems that have some similarity to climate change – both are caused by the emission of gases that circulate widely, though neither has the scope and scale of the climate problem. But it is encouraging that both problems are well en route to solution. Our main institutions for addressing climate change are the IPCC (Intergovernmental Panel on Climate Change) and the UFCCC (United Nations Framework Convention on Climate Change), with the latter producing the Kyoto Protocol in 1997 and the 2015 Paris Agreement. Cap and Trade and regulatory policies have been used more widely than any others for tackling the climate problem so far. Replacement of fossil fuels by low-carbon energy technologies offers the greatest hope for a complete solution, and is within sight: policies need to be focused on making this a reality.

Author(s):  
Nick Jelley

‘Why do we need renewables?’ describes the dangers of fossil fuels and explains the importance of renewable energy as an alternative. It shows that the use of fossil fuels causes global warming and climate change, leading to widespread concern, and also to a growing realization of the harm caused by the air pollution from coal burning and from internal combustion engines in cars and lorries. These threats are causing a switch away from fossil fuels to renewables that is gaining impetus from the growing awareness of the increased intensity and frequency of extreme weather seen in recent years. This transition is also being aided by the falling price of clean energy from renewables, in particular, solar and wind farms, which will become the dominant sources. The area of land or sea required for these farms is readily available, as are the back-ups required to handle their variability. Alternative supplies of low-carbon energy are examined. In the Paris Agreement in 2015, it was recognized that carbon dioxide emissions must reach net-zero by 2050 to avoid dangerous climate change.


Author(s):  
Kathleen Araújo

This chapter outlines the design of the current study. It discusses my underlying logic for scoping energy system change with theory-building in the form of (1) a framework on intervention that operationalizes insights from the previous chapter and (2) conceptual models of structural readiness. A brief review then follows of related, global developments to provide broader context for the cases. The chapter concludes with a preview of the transitions that will be discussed in depth in subsequent chapters. This book draws on my research of four national energy system transitions covering the period since 1970. I selected a timeframe that reflected a common context of international events which preceded as well as followed the oil shocks of 1973 and 1979. Such framing allowed me to trace policy and technology learning over multiple decades for different cases. I completed field work for this project primarily between 2010 and 2012, with updates continuing through to the time this book went to press. I selected cases from more than 100 countries in the International Energy Agency (IEA) databases. The ones that I chose represented countries which demonstrated an increase of 100% or more in domestic production of a specific, low carbon energy and the displacement of at least 15 percentage points in the energy mix by this same, low carbon energy relative to traditional fuels for the country and sector of relevance. I utilized adoption and displacement metrics to consider both absolute and relative changes. Final cases reflect a diversity of energy types and, to some extent, differences in the socio-economic and geographic attributes of the countries. The technologies represent some of the more economically-competitive substitutes for fossil fuels. It’s important to emphasize that the number of cases was neither exhaustive nor fully representative. Instead, the cases reflect an illustrative group of newer, low carbon energy technologies for in depth evaluation. Each of the cases shares certain, basic similarities. These include a national energy system comprised of actors, inputs, and outputs with systemic architecture connecting the constituent parts in a complex network of energy-centered flows over time—including extraction, production, sale, delivery, regulation, and consumption.


2013 ◽  
Vol 12 (4) ◽  
pp. 374-383 ◽  

Global warming is one of the most serious challenges facing humankind as it has the potential to dramatically modify the living conditions of future generations. In order to reduce the emission of greenhouse gases, most countries are implementing regulations aimed at reducing their dependence on fossil fuels, promoting energy efficiency practices and favoring the deployment of low carbon energy technologies, including renewable energy sources. In line with the international commitments assumed as a member of the European Union (EU) and also as a signatory of the Kyoto Protocol, Spain developed a National Plan for Renewable Energies (PER 2005-2010) that forms the basis of the national strategy in this field. Spain has often been cited as an example for the rapid growth in the use of low carbon energy technologies. However, despite significant progress in the last decade, Spain is far from meeting the national objectives set in PER primarily due to slow growth in the demand for biofuels and the limited success of biomass fired power plants. The evolution in other energy technologies has been faster, situating Spain as world a leader in solar and wind energy. However, the contribution of these technologies to the national consumption is very marginal. In the midst of intense regulatory, commercial and R&D activity, this paper analyses the current situation with respect to the production of renewable energies in Spain, focusing primarily on the use of biomass resources. The paper offers a general view of policy and regulatory background, illustrates current progress towards meeting national objectives and provides a brief description of representative projects and market activity in biofuel production and biomass valorization.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
André Månberger

AbstractPrevious research has identified that climate change mitigation policies could increase demand for resources perceived as critical, because these are used in many renewable energy technologies. This study assesses how reducing the extraction and use of fossil fuels could affect the supply of (i) elements jointly produced with fossil fuels and (ii) elements jointly produced with a host that is currently mainly used in fossil fuel supply chains. Several critical resources are identified for which supply potential from current sources is likely to decline. Some of these, e.g. germanium and vanadium, have uses in low-carbon energy systems. Renewable energy transitions can thus simultaneously increase demand and reduce supply of critical elements. The problem is greatest for technology groups in which by-products are more difficult to recycle than the host. Photovoltaic cell technology stands out as one such group. Phasing out fossil fuels has the potential to reduce both the supply potential (i.e. primary flow) and recoverable resources (i.e. stock) of materials involved in such technology groups. Further studies could examine possibilities to increase recovery rates, extract jointly produced resources independently of hosts and how the geographical distribution of by-product supply sources might change if fossil fuel extraction is scaled back.


Author(s):  
Paul Taylor

“Accelerating the Transition to a 100% Renewable Energy Era” is part of the series Lecture Notes in Energy that contains 24 papers from multiple authors. The notes provide a topical and comprehensive source of information on achieving the transition to a low-carbon energy system, which is essential in the fight against climate change as we transition from our use of fossil fuels to clean energy.The book provides in-depth analysis of the various solutions that will contribute to this change, such as hydrogen fuel, low carbon buildings and cities, security of supply, energy grids and energy storage. The collection of papers provides the necessary data, case studies and analysis to frame the topic and explore the challenges and potential solutions.


2013 ◽  
Vol 37 ◽  
pp. 2637-2644
Author(s):  
Andrea Ramirez ◽  
Bhavik R. Bakshi ◽  
Thomas Gibon ◽  
Edgar Hertwich

Author(s):  
Jonas Sonnenschein

Rapid decarbonization requires additional research, development, and demonstration of low-carbon energy technologies. Various financing instruments are in place to support this development. They are frequently assessed through indicator-based evaluations. There is no standard set of indicators for this purpose. This study looks at the Nordic countries, which are leading countries with respect to eco-innovation. Different indicators to assess financing instruments are analysed with respect to their acceptance, the ease of monitoring, and their robustness. None of the indicators emerges as clearly superior from the analysis. Indicator choice is subject to trade-offs and leaves room for steering evaluation results in a desired direction. The study concludes by discussing potential policy implications of biases in indicator-based evaluation.


2020 ◽  
Vol 40 (4) ◽  
pp. 471-489
Author(s):  
Dinah Rajak

In recent years the oil industry has shifted from climate change denialism to advocacy of the Paris Agreement, championing sustainability in an apparent assertion (rather than rejection) of corporate responsibility. Meanwhile growth forecasts continue unabated to finance the industry’s enthusiasm for upstream ventures in uncharted territories. How do extractive companies, and those who work in them, square this contradiction? Fieldwork among oil company executives points to a new wave of techno-optimism: a deus ex machina that will descend from the labs of corporate research and development (R&D) labs to reconcile these irreconcilable imperatives. Rather than denial, the projection of win-win synergies between growth and sustainability involves a suspension of disbelief; an instrumental faith in the miraculous power of technology that tenders salvation without forsaking fossil fuels, or restructuring markets.


2019 ◽  
Vol 27 (2) ◽  
pp. 185-199 ◽  
Author(s):  
James W.N. Steenberg ◽  
Peter N. Duinker ◽  
Irena F. Creed ◽  
Jacqueline N. Serran ◽  
Camille Ouellet Dallaire

In response to global climate change, Canada is transitioning towards a low-carbon economy and the need for policy approaches that are effective, equitable, coordinated, and both administratively and politically feasible is high. One point is clear; the transition is intimately tied to the vast supply of ecosystem services in the boreal zone of Canada. This paper describes four contrasting futures for the boreal zone using scenario analysis, which is a transdisciplinary, participatory approach that considers alternative futures and policy implications under conditions of high uncertainty and complexity. The two critical forces shaping the four scenarios are the global economy’s energy and society’s capacity to adapt. The six drivers of change are atmospheric change, the demand for provisioning ecosystem services, the demand for nonprovisioning ecosystem services, demographics, and social values, governance and geopolitics, and industrial innovation and infrastructure. The four scenarios include: (i) the Green Path, where a low-carbon economy is coupled with high adaptive capacity; (ii) the Uphill Climb, where a low-carbon economy is instead coupled with low adaptive capacity; (iii) the Carpool Lane, where society has a strong capacity to adapt but a reliance on fossil fuels; and (iv) the Slippery Slope, where there is both a high-carbon economy and a society with low adaptive capacity. The scenarios illustrate the importance of transitioning to a low-carbon economy and the role of society’s adaptive capacity in doing so. However, they also emphasize themes like social inequality and adverse environmental outcomes arising from the push towards climate change mitigation.


Sign in / Sign up

Export Citation Format

Share Document