scholarly journals “Accelerating the Transition to a 100% Renewable Energy Era”

Author(s):  
Paul Taylor

“Accelerating the Transition to a 100% Renewable Energy Era” is part of the series Lecture Notes in Energy that contains 24 papers from multiple authors. The notes provide a topical and comprehensive source of information on achieving the transition to a low-carbon energy system, which is essential in the fight against climate change as we transition from our use of fossil fuels to clean energy.The book provides in-depth analysis of the various solutions that will contribute to this change, such as hydrogen fuel, low carbon buildings and cities, security of supply, energy grids and energy storage. The collection of papers provides the necessary data, case studies and analysis to frame the topic and explore the challenges and potential solutions.

2021 ◽  
Author(s):  
Henry Lee ◽  
Daniel P. Schrag ◽  
Matthew Bunn ◽  
Michael Davidson ◽  
Wei Peng ◽  
...  

Climate change is a key problem of the 21st century. China, as the largest emitter of greenhouse gases, has committed to stabilize its current emissions and dramatically increase the share of electricity production from non-fossil fuels by 2030. However, this is only a first step: in the longer term, China needs to aggressively strive to reach a goal of zero-emissions. Through detailed discussions of electricity pricing, electric vehicle policies, nuclear energy policies, and renewable energy policies, this book reviews how near-term climate and energy policies can affect long-term decarbonization pathways beyond 2030, building the foundations for decarbonization in advance of its realization. Focusing primarily on the electricity sector in China - the main battleground for decarbonization over the next century – it provides a valuable resource for researchers and policymakers, as well as energy and climate experts.


Author(s):  
Nick Jelley

‘Why do we need renewables?’ describes the dangers of fossil fuels and explains the importance of renewable energy as an alternative. It shows that the use of fossil fuels causes global warming and climate change, leading to widespread concern, and also to a growing realization of the harm caused by the air pollution from coal burning and from internal combustion engines in cars and lorries. These threats are causing a switch away from fossil fuels to renewables that is gaining impetus from the growing awareness of the increased intensity and frequency of extreme weather seen in recent years. This transition is also being aided by the falling price of clean energy from renewables, in particular, solar and wind farms, which will become the dominant sources. The area of land or sea required for these farms is readily available, as are the back-ups required to handle their variability. Alternative supplies of low-carbon energy are examined. In the Paris Agreement in 2015, it was recognized that carbon dioxide emissions must reach net-zero by 2050 to avoid dangerous climate change.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 163 ◽  
Author(s):  
Julián Puszkiel ◽  
Aurelien Gasnier ◽  
Guillermina Amica ◽  
Fabiana Gennari

Hydrogen technology has become essential to fulfill our mobile and stationary energy needs in a global low–carbon energy system. The non-renewability of fossil fuels and the increasing environmental problems caused by our fossil fuel–running economy have led to our efforts towards the application of hydrogen as an energy vector. However, the development of volumetric and gravimetric efficient hydrogen storage media is still to be addressed. LiBH4 is one of the most interesting media to store hydrogen as a compound due to its large gravimetric (18.5 wt.%) and volumetric (121 kgH2/m3) hydrogen densities. In this review, we focus on some of the main explored approaches to tune the thermodynamics and kinetics of LiBH4: (I) LiBH4 + MgH2 destabilized system, (II) metal and metal hydride added LiBH4, (III) destabilization of LiBH4 by rare-earth metal hydrides, and (IV) the nanoconfinement of LiBH4 and destabilized LiBH4 hydride systems. Thorough discussions about the reaction pathways, destabilizing and catalytic effects of metals and metal hydrides, novel synthesis processes of rare earth destabilizing agents, and all the essential aspects of nanoconfinement are led.


Daedalus ◽  
2012 ◽  
Vol 141 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Mohamed T. El-Ashry

The world is entering a new energy era marked by concerns over energy security, climate change, and access by the poor to modern energy services. Yet the current energy path is not compatible with sustainable development objectives. Global demand for energy will continue to grow; so will CO2 emissions. Achieving a low-carbon energy world will require an unprecedented technological transformation in the way energy is produced and used. That transformation has begun, as renewables capacity continues to grow, prices continue to fall, and shares of global energy from renewables continue to increase. Government policies are the main driver behind renewable energy's meteoric growth. Still, the world is tapping only a small amount of the vast supply of renewable energy resources. There is broad consensus that the role of these resources should be expanded significantly in order to meaningfully address energy security, energy access, and climate change.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Isak Karabegović

It is well-known that, in the past decades, the burning of fossil fuels was identified as the major cause of climate change. Climate change mitigation is becoming a central concern of global society. Limiting global warming to below 2 °C above the temperature of the pre-industrial period is the key to preserving global ecosystems and providing a secure basis for human activities, as well as reducing excessive environmental change. The ambitions increased at an accelerated pace with a dramatic expansion of net zero-emission targets. Increasing pressure from citizens and society has forced countries to intensify their climate plans, while the private sector has bought a record amount of renewable energy. An energy system based on fossil fuels must be replaced by renewable energy with low carbon emissions with improved energy efficiency. That applies to all consumers of fossil energy: cities, villages, building sectors, industry, transport, agriculture, and forestry. The paper explores and presents the strategy of energy development of renewable energy sources in the world. The application of new technologies that have led to developing renewable energy sources is presented in detail: wind energy, solar energy, small hydropower plants, biomass, and their increase in the total share of energy production, i.e., reduced fossil fuel use in energy production. Investments in new technologies used in renewable energy sources have led to increases in employment worldwide. Analysis of the trend of increased energy production from RES (Renewable Energy Sources) with investment plans, the employment rate for each energy source, and the development of renewable energy sources in the coming period are provided.


Author(s):  
Andrew Hugh MacDougall ◽  
Joeri Rogelj ◽  
Patrick Withey

Abstract Global agriculture is the second largest contributor to anthropogenic climate change after the burning of fossil fuels. However the potential to mitigate the agricultural climate change contribution is limited and needs to account for the imperative to supply food for the global population. Advances in microbial biomass cultivation technology have recently opened a pathway to growing substantial amounts of food for humans or livestock on a small fraction of the land presently used for agriculture. Here we investigate the potential climate change impacts of the end of agriculture as the primary human food production system. We find that replacing agricultural primary production with electrically powered microbial primary production before a low-carbon energy transition has been completed could redirect renewable energy away from replacing fossil fuels, potentially leading to higher total CO2 emissions. If deployed after a transition to renewable energy, the technology could alleviate agriculturally driven climate change. These diverging pathways originate from the reversibility of agricultural driven global warming and the irreversibility of fossil fuel CO2 driven warming. The range of reduced warming from the replacement of agriculture ranges from -0.22 [-0.29 to -0.04] ºC for Shared Socioeconomic Pathway (SSP)1-1.9 to -0.85 [-0.99 to -0.39]ºC for SSP4-6.0. For limited temperature target overshoot scenarios, replacement of agriculture could eliminate or reduce the need for active atmospheric CO2 removal to achieve the necessary peak and decline in global warming.


2019 ◽  
Vol 102 (4) ◽  
pp. 304-350 ◽  
Author(s):  
Christopher J Rhodes

Amid present concerns over a potential scarcity of critical elements and raw materials that are essential for modern technology, including those for low-carbon energy production, a survey of the present situation, and how it may unfold both in the immediate and the longer term, appears warranted. For elements such as indium, current recycling rates are woefully low, and although a far more effective recycling programme is necessary for most materials, it is likely that a full-scale inauguration of a global renewable energy system will require substitution of many scarcer elements by more Earth-abundant material alternatives. Currently, however, it is fossil fuels that are needed to process them, and many putative Earth-abundant material technologies are insufficiently close to the level of commercial viability required to begin to supplant their fossil fuel equivalents “necessarily rapidly and at scale”. As part of a significant expansion of renewable energy production, it will be necessary to recycle elements from wind turbines and solar panels (especially thin-film cells). The interconnected nature of particular materials, for example, cadmium, gallium, germanium, indium and tellurium, all mainly being recovered from the production of zinc, aluminium and copper, and helium from natural gas, means that the availability of such ‘hitchhiker’ elements is a function of the reserve size and production rate of the primary (or ‘attractor’) material. Even for those elements that are relatively abundant on Earth, limitations in their production rates/supply may well be experienced on a timescale of decades, and so a more efficient (reduced) use of them, coupled with effective collection and recycling strategies, should be embarked upon urgently.


Author(s):  
Kathleen Araújo

This chapter outlines the design of the current study. It discusses my underlying logic for scoping energy system change with theory-building in the form of (1) a framework on intervention that operationalizes insights from the previous chapter and (2) conceptual models of structural readiness. A brief review then follows of related, global developments to provide broader context for the cases. The chapter concludes with a preview of the transitions that will be discussed in depth in subsequent chapters. This book draws on my research of four national energy system transitions covering the period since 1970. I selected a timeframe that reflected a common context of international events which preceded as well as followed the oil shocks of 1973 and 1979. Such framing allowed me to trace policy and technology learning over multiple decades for different cases. I completed field work for this project primarily between 2010 and 2012, with updates continuing through to the time this book went to press. I selected cases from more than 100 countries in the International Energy Agency (IEA) databases. The ones that I chose represented countries which demonstrated an increase of 100% or more in domestic production of a specific, low carbon energy and the displacement of at least 15 percentage points in the energy mix by this same, low carbon energy relative to traditional fuels for the country and sector of relevance. I utilized adoption and displacement metrics to consider both absolute and relative changes. Final cases reflect a diversity of energy types and, to some extent, differences in the socio-economic and geographic attributes of the countries. The technologies represent some of the more economically-competitive substitutes for fossil fuels. It’s important to emphasize that the number of cases was neither exhaustive nor fully representative. Instead, the cases reflect an illustrative group of newer, low carbon energy technologies for in depth evaluation. Each of the cases shares certain, basic similarities. These include a national energy system comprised of actors, inputs, and outputs with systemic architecture connecting the constituent parts in a complex network of energy-centered flows over time—including extraction, production, sale, delivery, regulation, and consumption.


2019 ◽  
Vol 11 (7) ◽  
pp. 1847 ◽  
Author(s):  
Rebecka Engström ◽  
Georgia Destouni ◽  
Mark Howells ◽  
Vivek Ramaswamy ◽  
Holger Rogner ◽  
...  

This paper analyses how local energy and climate actions can affect the use of water and land resources locally, nationally and globally. Each of these resource systems is linked to different Sustainable Development Goals (SDGs); we also explore related SDG interactions. A municipality in Sweden with the ambition of phasing out fossil fuels by year 2030 is used as illustrative case example. The local energy system is modelled in detail and indirect water and land requirements are quantified for three stylised decarbonisation scenarios of pathways to meeting climate and energy requirements (related to SDG13 and SDG7, respectively). Total local, national and global implications are addressed for the use of water and land resources, which relate to SDG6 for water, and SDG2 and SDG15 for land use. We find that the magnitude and location of water and land impacts are largely pathway-dependent. Some scenarios of low carbon energy may impede progress on SDG15, while others may compromise SDG6. Data for the studied resource uses are incoherently reported and have important gaps. As a consequence, the study results are indicative and subject to uncertainty. Still, they highlight the need to recognise that resource use changes targeting one SDG in one locality have local and non-local impacts that may compromise progress other SDGs locally and/or elsewhere in the world.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6452
Author(s):  
Dalia Streimikiene ◽  
Tomas Baležentis ◽  
Artiom Volkov ◽  
Mangirdas Morkūnas ◽  
Agnė Žičkienė ◽  
...  

The paper deals with the exposition of the main barriers and drivers of renewable energy usage in rural communities. Climate change mitigation is causing governments, policymakers, and international organizations worldwide to embark on policies, leading to increased use of renewable energy sources and improvement of energy efficiency. Climate change mitigation actions, including the Green Deal strategy in the EU, require satisfying the expanding energy demand and complying with the environmental restrictions. At the same time, the prevailing market structure and infrastructure relevant to the energy systems are undergoing a crucial transformation. Specifically, there has been a shift from centralized to more decentralized and interactive energy systems that are accompanied by a low-carbon energy transition. Smart Grid technology and other innovations in the area of renewable energy microgeneration technologies have enabled changes in terms of the roles of energy users: they can act as prosumers that are producing and consuming energy at the same time. Renewable energy generation that is allowing for deeper involvement of the citizens may render higher social acceptance, which, in turn, fuels the low-carbon energy transition. The collective energy prosumption in the form of energy cooperatives has become a widespread form of renewable energy initiatives in rural communities. Even though renewable energy consumption provides a lot of benefits and opportunities for rural communities, the fast penetration of renewables and energy prosumption encounter several important barriers in the rural areas. This paper analyses the main barriers and drivers of renewable energy initiatives in rural areas and provides policy implications for the low-carbon energy transition in rural areas.


Sign in / Sign up

Export Citation Format

Share Document