Research Design, Scoping Tools, and Preview

Author(s):  
Kathleen Araújo

This chapter outlines the design of the current study. It discusses my underlying logic for scoping energy system change with theory-building in the form of (1) a framework on intervention that operationalizes insights from the previous chapter and (2) conceptual models of structural readiness. A brief review then follows of related, global developments to provide broader context for the cases. The chapter concludes with a preview of the transitions that will be discussed in depth in subsequent chapters. This book draws on my research of four national energy system transitions covering the period since 1970. I selected a timeframe that reflected a common context of international events which preceded as well as followed the oil shocks of 1973 and 1979. Such framing allowed me to trace policy and technology learning over multiple decades for different cases. I completed field work for this project primarily between 2010 and 2012, with updates continuing through to the time this book went to press. I selected cases from more than 100 countries in the International Energy Agency (IEA) databases. The ones that I chose represented countries which demonstrated an increase of 100% or more in domestic production of a specific, low carbon energy and the displacement of at least 15 percentage points in the energy mix by this same, low carbon energy relative to traditional fuels for the country and sector of relevance. I utilized adoption and displacement metrics to consider both absolute and relative changes. Final cases reflect a diversity of energy types and, to some extent, differences in the socio-economic and geographic attributes of the countries. The technologies represent some of the more economically-competitive substitutes for fossil fuels. It’s important to emphasize that the number of cases was neither exhaustive nor fully representative. Instead, the cases reflect an illustrative group of newer, low carbon energy technologies for in depth evaluation. Each of the cases shares certain, basic similarities. These include a national energy system comprised of actors, inputs, and outputs with systemic architecture connecting the constituent parts in a complex network of energy-centered flows over time—including extraction, production, sale, delivery, regulation, and consumption.

2021 ◽  
Author(s):  
Ryan Holland ◽  
Alona Armstrong ◽  
Fabio Carvalho

<p>Following the Paris agreement, many nations have committed to targets of net zero emissions, resulting in a significant increase in low-carbon energy generation. Recent improvements in the cost and efficiency of photovoltaic (PV) technology have made their deployment cheaper than new coal and gas fired power stations in a number of regions, with the uptake of PV projected to surpass fossil fuels by 2035. Large-scale, ground-mounted systems are likely to constitute a considerable portion of this expansion, with the International Energy Agency suggesting that 69% of new capacity additions in 2021 will be utility scale deployments (although some of this may be building-mounted). Despite the expansion of ground-mounted solar parks and the knowledge that land use change is a greater threat to nature than climate change, there is very little understanding of the environmental implications. In particular, the effect on ecosystem carbon cycling, and thus the decarbonisation attraction of the technology, is unknown. Whilst the carbon impacts of the technological components have been relatively well resolved, the true carbon costs cannot be determined without quantifying the impacts on land carbon. Here, we present a solar park carbon calculator (SPCC) that quantifies the full suite of solar park carbon impacts.</p><p>The SPCC provides information on the technological and environmental carbon flows, drawing on established quantifications of carbon costs for system components, operation, and land management. Key components include the emissions factors for production of panels and mounts, machinery related emissions and the associated carbon flows of ground disturbances, before and after park construction. The SPCC is applied to a case-study solar park, providing insight into the dominant carbon flows and payback time in light of grid electricity carbon intensities. Ultimately, the SPCC can help inform solar park developer decisions in order to minimise carbon costs and maximise carbon sequestration.</p>


2021 ◽  
Author(s):  
Henry Lee ◽  
Daniel P. Schrag ◽  
Matthew Bunn ◽  
Michael Davidson ◽  
Wei Peng ◽  
...  

Climate change is a key problem of the 21st century. China, as the largest emitter of greenhouse gases, has committed to stabilize its current emissions and dramatically increase the share of electricity production from non-fossil fuels by 2030. However, this is only a first step: in the longer term, China needs to aggressively strive to reach a goal of zero-emissions. Through detailed discussions of electricity pricing, electric vehicle policies, nuclear energy policies, and renewable energy policies, this book reviews how near-term climate and energy policies can affect long-term decarbonization pathways beyond 2030, building the foundations for decarbonization in advance of its realization. Focusing primarily on the electricity sector in China - the main battleground for decarbonization over the next century – it provides a valuable resource for researchers and policymakers, as well as energy and climate experts.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 163 ◽  
Author(s):  
Julián Puszkiel ◽  
Aurelien Gasnier ◽  
Guillermina Amica ◽  
Fabiana Gennari

Hydrogen technology has become essential to fulfill our mobile and stationary energy needs in a global low–carbon energy system. The non-renewability of fossil fuels and the increasing environmental problems caused by our fossil fuel–running economy have led to our efforts towards the application of hydrogen as an energy vector. However, the development of volumetric and gravimetric efficient hydrogen storage media is still to be addressed. LiBH4 is one of the most interesting media to store hydrogen as a compound due to its large gravimetric (18.5 wt.%) and volumetric (121 kgH2/m3) hydrogen densities. In this review, we focus on some of the main explored approaches to tune the thermodynamics and kinetics of LiBH4: (I) LiBH4 + MgH2 destabilized system, (II) metal and metal hydride added LiBH4, (III) destabilization of LiBH4 by rare-earth metal hydrides, and (IV) the nanoconfinement of LiBH4 and destabilized LiBH4 hydride systems. Thorough discussions about the reaction pathways, destabilizing and catalytic effects of metals and metal hydrides, novel synthesis processes of rare earth destabilizing agents, and all the essential aspects of nanoconfinement are led.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Brighid Moran Jay ◽  
David Howard ◽  
Nick Hughes ◽  
Jeanette Whitaker ◽  
Gabrial Anandarajah

Low carbon energy technologies are not deployed in a social vacuum; there are a variety of complex ways in which people understand and engage with these technologies and the changing energy system overall. However, the role of the public’s socio-environmental sensitivities to low carbon energy technologies and their responses to energy deployments does not receive much serious attention in planning decarbonisation pathways to 2050. Resistance to certain resources and technologies based on particular socio-environmental sensitivities would alter the portfolio of options available which could shape how the energy system achieves decarbonisation (the decarbonisation pathway) as well as affecting the cost and achievability of decarbonisation. Thus, this paper presents a series of three modelled scenarios which illustrate the way that a variety of socio-environmental sensitivities could impact the development of the energy system and the decarbonisation pathway. The scenarios represent risk aversion (DREAD) which avoids deployment of potentially unsafe large-scale technology, local protectionism (NIMBY) that constrains systems to their existing spatial footprint, and environmental awareness (ECO) where protection of natural resources is paramount. Very different solutions for all three sets of constraints are identified; some seem slightly implausible (DREAD) and all show increased cost (especially in ECO).


2017 ◽  
Vol 3 (1) ◽  
pp. 12-25
Author(s):  
Cássio Rangel Paulista ◽  
Tatiane Stellet Machado ◽  
Joao Jose de Assis Rangel

This paper aims to analyze the photovoltaic electricity energy expansion and recent data about the behavior of the CO2 emissions in Brazil and other selected countries. Data were collected from different bases as International Energy Agency (Agência Internacional de Energia), Ministry of Energy and Mines (Ministério de Minas e Energia), Research Electric Company as well as other papers in the field. Kaya Identity was applied as basis in order to evaluate the CO2 emissions. As a result, it could be seen a clear domain of Germany and Italy in the photovoltaic generation sector, with high investments in the development and dissemination of that technology. Brazil presented an energetic matrix of low carbon but with a tendency to increase emissions per capita throughout the years. The effect of decoupling between the greenhouse gas emissions and the large-scale economic development was checked. It was realized that that phenomenon tends to intensify it since renewable energy technologies get higher levels of use.


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Carlos Andrés Gallego

The deployment of renewable energy technologies will play a crucial role in the global transition to a low-carbon economy and ultimately in the fight against global warming. However, this transition could face important problems because most of those technologies rely on the steady supply of critical minerals. Colombia, thanks to its hydrological resources, has relied on the hydro­power for electricity generation. However, the government has implemented measures to back-up the energy system in draught periods and, consequently, fossil fuels-based plants have increased the market share and with these, CO2 emissions. This study assesses the mineral demand in Colombia in the period 2020-2050 for the rare earth elements embedded in the deployment of wind power technologies in four different climate policy scenarios in order to establish whether they could face geological bott­lenecks that could ultimately hamper the transition to a low-carbon economy. The Gigawatts (GW) of future capacity additions in the energy system are converted into tons of metal using published metal intensities of use and assumptions of Colombia’s technological pathway. Then, the cumulated mineral demand is compared against current mining production rates and geological reserves to establish geological bottlenecks. The results show that the reserves will not pose any threat to its transition. However, when compared to current mining rates, the mineral demand in 2050 could pose a problem for the supply of minerals. Finally, this study gives some policy recommendations that could be used to mitigate these issues, such as substitution, improved circular economy and sound technological choices.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3001 ◽  
Author(s):  
Linus Lawrenz ◽  
Bobby Xiong ◽  
Luise Lorenz ◽  
Alexandra Krumm ◽  
Hans Hosenfeld ◽  
...  

With an increasing expected energy demand and current dominance of coal electrification, India plays a major role in global carbon policies and the future low-carbon transformation. This paper explores three energy pathways for India until 2050 by applying the linear, cost-minimizing, global energy system model (GENeSYS-MOD). The benchmark scenario “limited emissions only” (LEO) is based on ambitious targets set out by the Paris Agreement. A more conservative “business as usual” (BAU) scenario is sketched out along the lines of the New Policies scenario from the International Energy Agency (IEA). On the more ambitious side, we explore the potential implications of supplying the Indian economy entirely with renewable energies with the “100% renewable energy sources” (100% RES) scenario. Overall, our results suggest that a transformation process towards a low-carbon energy system in the power, heat, and transportation sectors until 2050 is technically feasible. Solar power is likely to establish itself as the key energy source by 2050 in all scenarios, given the model’s underlying emission limits and technical parameters. The paper concludes with an analysis of potential social, economic and political barriers to be overcome for the needed Indian low-carbon transformation.


2019 ◽  
Vol 11 (7) ◽  
pp. 1847 ◽  
Author(s):  
Rebecka Engström ◽  
Georgia Destouni ◽  
Mark Howells ◽  
Vivek Ramaswamy ◽  
Holger Rogner ◽  
...  

This paper analyses how local energy and climate actions can affect the use of water and land resources locally, nationally and globally. Each of these resource systems is linked to different Sustainable Development Goals (SDGs); we also explore related SDG interactions. A municipality in Sweden with the ambition of phasing out fossil fuels by year 2030 is used as illustrative case example. The local energy system is modelled in detail and indirect water and land requirements are quantified for three stylised decarbonisation scenarios of pathways to meeting climate and energy requirements (related to SDG13 and SDG7, respectively). Total local, national and global implications are addressed for the use of water and land resources, which relate to SDG6 for water, and SDG2 and SDG15 for land use. We find that the magnitude and location of water and land impacts are largely pathway-dependent. Some scenarios of low carbon energy may impede progress on SDG15, while others may compromise SDG6. Data for the studied resource uses are incoherently reported and have important gaps. As a consequence, the study results are indicative and subject to uncertainty. Still, they highlight the need to recognise that resource use changes targeting one SDG in one locality have local and non-local impacts that may compromise progress other SDGs locally and/or elsewhere in the world.


2013 ◽  
Vol 12 (4) ◽  
pp. 374-383 ◽  

Global warming is one of the most serious challenges facing humankind as it has the potential to dramatically modify the living conditions of future generations. In order to reduce the emission of greenhouse gases, most countries are implementing regulations aimed at reducing their dependence on fossil fuels, promoting energy efficiency practices and favoring the deployment of low carbon energy technologies, including renewable energy sources. In line with the international commitments assumed as a member of the European Union (EU) and also as a signatory of the Kyoto Protocol, Spain developed a National Plan for Renewable Energies (PER 2005-2010) that forms the basis of the national strategy in this field. Spain has often been cited as an example for the rapid growth in the use of low carbon energy technologies. However, despite significant progress in the last decade, Spain is far from meeting the national objectives set in PER primarily due to slow growth in the demand for biofuels and the limited success of biomass fired power plants. The evolution in other energy technologies has been faster, situating Spain as world a leader in solar and wind energy. However, the contribution of these technologies to the national consumption is very marginal. In the midst of intense regulatory, commercial and R&D activity, this paper analyses the current situation with respect to the production of renewable energies in Spain, focusing primarily on the use of biomass resources. The paper offers a general view of policy and regulatory background, illustrates current progress towards meeting national objectives and provides a brief description of representative projects and market activity in biofuel production and biomass valorization.


Author(s):  
Geoffrey Heal

Ozone depletion and acid rain are problems that have some similarity to climate change – both are caused by the emission of gases that circulate widely, though neither has the scope and scale of the climate problem. But it is encouraging that both problems are well en route to solution. Our main institutions for addressing climate change are the IPCC (Intergovernmental Panel on Climate Change) and the UFCCC (United Nations Framework Convention on Climate Change), with the latter producing the Kyoto Protocol in 1997 and the 2015 Paris Agreement. Cap and Trade and regulatory policies have been used more widely than any others for tackling the climate problem so far. Replacement of fossil fuels by low-carbon energy technologies offers the greatest hope for a complete solution, and is within sight: policies need to be focused on making this a reality.


Sign in / Sign up

Export Citation Format

Share Document