scholarly journals Reduced Use of Fossil Fuels can Reduce Supply of Critical Resources

2021 ◽  
Vol 6 (2) ◽  
Author(s):  
André Månberger

AbstractPrevious research has identified that climate change mitigation policies could increase demand for resources perceived as critical, because these are used in many renewable energy technologies. This study assesses how reducing the extraction and use of fossil fuels could affect the supply of (i) elements jointly produced with fossil fuels and (ii) elements jointly produced with a host that is currently mainly used in fossil fuel supply chains. Several critical resources are identified for which supply potential from current sources is likely to decline. Some of these, e.g. germanium and vanadium, have uses in low-carbon energy systems. Renewable energy transitions can thus simultaneously increase demand and reduce supply of critical elements. The problem is greatest for technology groups in which by-products are more difficult to recycle than the host. Photovoltaic cell technology stands out as one such group. Phasing out fossil fuels has the potential to reduce both the supply potential (i.e. primary flow) and recoverable resources (i.e. stock) of materials involved in such technology groups. Further studies could examine possibilities to increase recovery rates, extract jointly produced resources independently of hosts and how the geographical distribution of by-product supply sources might change if fossil fuel extraction is scaled back.

Author(s):  
Kathleen Araújo

This chapter outlines the design of the current study. It discusses my underlying logic for scoping energy system change with theory-building in the form of (1) a framework on intervention that operationalizes insights from the previous chapter and (2) conceptual models of structural readiness. A brief review then follows of related, global developments to provide broader context for the cases. The chapter concludes with a preview of the transitions that will be discussed in depth in subsequent chapters. This book draws on my research of four national energy system transitions covering the period since 1970. I selected a timeframe that reflected a common context of international events which preceded as well as followed the oil shocks of 1973 and 1979. Such framing allowed me to trace policy and technology learning over multiple decades for different cases. I completed field work for this project primarily between 2010 and 2012, with updates continuing through to the time this book went to press. I selected cases from more than 100 countries in the International Energy Agency (IEA) databases. The ones that I chose represented countries which demonstrated an increase of 100% or more in domestic production of a specific, low carbon energy and the displacement of at least 15 percentage points in the energy mix by this same, low carbon energy relative to traditional fuels for the country and sector of relevance. I utilized adoption and displacement metrics to consider both absolute and relative changes. Final cases reflect a diversity of energy types and, to some extent, differences in the socio-economic and geographic attributes of the countries. The technologies represent some of the more economically-competitive substitutes for fossil fuels. It’s important to emphasize that the number of cases was neither exhaustive nor fully representative. Instead, the cases reflect an illustrative group of newer, low carbon energy technologies for in depth evaluation. Each of the cases shares certain, basic similarities. These include a national energy system comprised of actors, inputs, and outputs with systemic architecture connecting the constituent parts in a complex network of energy-centered flows over time—including extraction, production, sale, delivery, regulation, and consumption.


2013 ◽  
Vol 18 (4) ◽  
pp. 484-503 ◽  
Author(s):  
Paul J. Burke

AbstractThis paper uses data for 134 countries for the period 1960–2010 to document an energy ladder that nations ascend as their economies develop. On average, economic development results in an overall substitution from the use of biomass to energy sourced from fossil fuels, and then increasingly towards nuclear power and certain low-carbon modern renewables such as wind power. The process results in the carbon intensity of energy evolving in an inverse-U manner as per capita incomes increase. Fossil fuel-poor countries climb more quickly to the low-carbon upper rungs of the national-level energy ladder and so typically experience larger reductions in the carbon intensity of energy as they develop. Leapfrogging to low-carbon energy sources on the upper rungs of the national-level energy ladder is one route via which developing countries can reduce the magnitudes of their expected upswings in carbon dioxide emissions.


2013 ◽  
Vol 12 (4) ◽  
pp. 374-383 ◽  

Global warming is one of the most serious challenges facing humankind as it has the potential to dramatically modify the living conditions of future generations. In order to reduce the emission of greenhouse gases, most countries are implementing regulations aimed at reducing their dependence on fossil fuels, promoting energy efficiency practices and favoring the deployment of low carbon energy technologies, including renewable energy sources. In line with the international commitments assumed as a member of the European Union (EU) and also as a signatory of the Kyoto Protocol, Spain developed a National Plan for Renewable Energies (PER 2005-2010) that forms the basis of the national strategy in this field. Spain has often been cited as an example for the rapid growth in the use of low carbon energy technologies. However, despite significant progress in the last decade, Spain is far from meeting the national objectives set in PER primarily due to slow growth in the demand for biofuels and the limited success of biomass fired power plants. The evolution in other energy technologies has been faster, situating Spain as world a leader in solar and wind energy. However, the contribution of these technologies to the national consumption is very marginal. In the midst of intense regulatory, commercial and R&D activity, this paper analyses the current situation with respect to the production of renewable energies in Spain, focusing primarily on the use of biomass resources. The paper offers a general view of policy and regulatory background, illustrates current progress towards meeting national objectives and provides a brief description of representative projects and market activity in biofuel production and biomass valorization.


2021 ◽  
Vol 13 (16) ◽  
pp. 8856
Author(s):  
Samiha Mjahed Hammami ◽  
Heyam Abdulrahman Al Moosa

Despite growing interest in issues of place attachment and land use changes, scholars of renewable energy have tended to overlook the ways that people–place relations affect local acceptance/opposition of renewable energy projects. We address this gap drawing on the concept of customer experience to capture the meaning of place attachment in a specific context of climate change adaptation (e.g., proposals to site large-scale low-carbon energy technologies such as wind farms) and deepening understanding of the role of place attachment in shaping community responses to the local siting of renewable energy technologies. This research adopts a phenomenological approach that focuses on the narrators’ impressions of their experience with the local place where they live (a village in Northeast Tunisia) as well as the meanings they attribute to the project. Results show that according to the evaluation of change, whether the renewable energy project enhances or disrupts the different aspects of place experience, residents will exhibit respectively either positive or negative emotions and attitudes and will take action accordingly either by supporting or protesting the project.


Author(s):  
Geoffrey Heal

Ozone depletion and acid rain are problems that have some similarity to climate change – both are caused by the emission of gases that circulate widely, though neither has the scope and scale of the climate problem. But it is encouraging that both problems are well en route to solution. Our main institutions for addressing climate change are the IPCC (Intergovernmental Panel on Climate Change) and the UFCCC (United Nations Framework Convention on Climate Change), with the latter producing the Kyoto Protocol in 1997 and the 2015 Paris Agreement. Cap and Trade and regulatory policies have been used more widely than any others for tackling the climate problem so far. Replacement of fossil fuels by low-carbon energy technologies offers the greatest hope for a complete solution, and is within sight: policies need to be focused on making this a reality.


2021 ◽  
Vol 250 ◽  
pp. 03001
Author(s):  
Natalya Danilina ◽  
Irina Reznikova

Renewable energy technologies (RET) that emerged as a result of the shift towards the renewable energy sources (RES) which aims at setting the path towards decentralized low-carbon energy systems intended for tackling global warming are becoming key elements of the smart grids of the future. Our paper applies the economic, social and technological model of the renewable energy platforms to the energy markets of the 21st century. The paper analyses the growing importance of the individual players (prosumers) on the energy market, especially when it comes to the renewable energy generation and trading. It shows that modern advanced information and communication technologies enabled the energy prosumers to trade their energy and information in two-way flows. All of these might be important for the transition towards sustainable economy and green technology.


2017 ◽  
Vol 12 (1) ◽  
pp. 43-48
Author(s):  
Andrew Johnson

Environmentalists continuously push for us, as a country, to decrease our fossil fuel usage and transition to a society powered by renewable energy. The money of oil companies and other corporations persuade our government to continue investing in fossil fuels as opposed to renewable energy. There are, however, other reasons which should convince us as a nation to invest in alternative energy sources. Eliminating our dependence on fossil fuels will benefit the nation economically and prepare us for a rapidly changing future. We, as Americans, should increasingly pursue renewable sources of alternative energy not only for the documented environmental reasons but also because investing in renewable energy technologies will provide jobs for Americans, decrease our dependence on other nations, and benefit the health of all Americans while decreasing our dependence on fossil fuels.


2021 ◽  
Vol 13 (3) ◽  
pp. 1217
Author(s):  
Kyungwon Park ◽  
Yoon Lee ◽  
Joon Han

In Korea, multiple efforts, including subsidies to energy industries, have been made to increase renewable energy use and strengthen the competitiveness of renewable energy industries. Ironically, a considerable number of subsidies have also been provided for fossil fuels, drawing criticism both within Korea and overseas that these subsidies increase not only fossil fuel consumption and greenhouse gas emissions, but also energy market distortion. Thus, the Korean government announced a plan to discontinue some fossil fuel subsidies in 2020. Based on Korea’s policy orientation to expand renewable energy and strengthen its competitiveness, various scenarios to phase out fossil fuel subsidies and increase renewable energy subsidies can be examined. This study used the computable general equilibrium model to subdivide the energy sector and analyze the influence of changes in subsidies on the Korean economy and CO2 emissions based on three scenarios. The results show that phasing out fossil fuel subsidies causes a significant reduction in domestic CO2 emissions by −6.9 to −8.5%, depending on our scenarios. Implementing energy policy in Korea may have minimum impacts on its economy when fossil fuel subsidies transfer to renewable energy industries. The real gross domestic product could be only decreased by −0.04 to −0.14%.


Author(s):  
Paul Taylor

“Accelerating the Transition to a 100% Renewable Energy Era” is part of the series Lecture Notes in Energy that contains 24 papers from multiple authors. The notes provide a topical and comprehensive source of information on achieving the transition to a low-carbon energy system, which is essential in the fight against climate change as we transition from our use of fossil fuels to clean energy.The book provides in-depth analysis of the various solutions that will contribute to this change, such as hydrogen fuel, low carbon buildings and cities, security of supply, energy grids and energy storage. The collection of papers provides the necessary data, case studies and analysis to frame the topic and explore the challenges and potential solutions.


2016 ◽  
Vol 15 (3) ◽  
pp. 95-108
Author(s):  
Venkatachalam Anbumozhi ◽  
Kaliappa Kalirajan

The production and use of low-carbon energy technology and services, such as renewable energy, are imperative for Asia's emerging economies (which are heavily dependent on imported energy and resources) to tackle global environmental issues like climate change. Acknowledging this fact, recently, governments in the Asian region individually have been taking effective actions in the form of voluntary targets and policy commitments to improve the production and use of low-carbon technology, such as solar, wind, geo-thermal, and so forth. Nevertheless, the diffusion of these technologies has been through liberalized trade, which has been low compared with trade and investment in other energy intensive sectors. Though effective tariffs are low, non-tariff barriers or behind-the-border constraints are very high. In this exploratory study, the potential for increased exports in low-carbon technology and services under a grand regional coalition, partial regional coalition, and stand alone scenarios is studied. We find that production, trade, and investment in renewable energy technologies are very low regionally. There is a large gap between the demand for and the supply of low-carbon energy technology and associated pollution abatement services. Behind-the-border constraints that exist within the exporting country, such as poor infrastructure and inefficient institutions, create this gap between actually realized and potentially possible exports. This supply gap provides an opportunity for those emerging Asian economies, which have the potential to contribute to the manufacturing of such technologies individually and collectively pooling their physical and human capital.


Sign in / Sign up

Export Citation Format

Share Document