ADAPTING LIVESTOCK PRODUCTION SYSTEMS TO CLIMATE CHANGE

Author(s):  
C.J. Stokes ◽  
S.M. Howden ◽  
A.J. Ash ◽  
P.C. Garnsworthy ◽  
J. Wiseman
2014 ◽  
pp. 148-189
Author(s):  
Angie Poliquit

The socio-economic contribution of livestock production to global livelihood and food security offsets its negative effects on the environment through greenhouse gas (GHG) emission. Livestocks are emitters of GHGs, carbon dioxide (CO2) from land conversion and deforestation, nitrous oxide (N2O) from manure and slurry, and methane (CH4) from animal digestion which significantly contribute to climate change. Climate change has both direct and indirect impacts on animal farming. Thus, the main concern nowadays is toward the development of programs for adaptation and mitigation of GHG emissions. This review provides knowledge about climate change impacts on livestock production systems with the identification of strategies for livestock adaptation to climate change and mitigation of GHG emissions.


2021 ◽  
Vol 48 (4) ◽  
pp. 9-13
Author(s):  
A. O. Agbeja ◽  
K. A. Olaifa ◽  
D. R. Akindolu ◽  
H. O. Salau ◽  
M. S. Akinlade

The livestock system is one of the most important characteristics of agrarian economy; livestock sector provides sustainability and stability to the national economy by contributing to farm energy and food security. Climate change is seen as a major threat to the survival of many species, ecosystems and the sustainability of livestock production systems in many parts of the world. Green house gases (GHG) are released in the atmosphere both by natural sources and anthropogenic (human related) activities. The impact of climate change can heighten the vulnerability of livestock systems and exacerbate existing stresses upon them, such as drought. Parasites and diseases are among the most severe factors that impact livestock production and reproduction, impact on livestock health, impact on feed and fodder availability, reduction in livestock population and impact of climate change on livestock genetics resource. However, the climate change especially global warming may highly influence production performance of farm animals throughout the world, this results in decreased animal production and productivity.     Le système de bétail est l'une des caractéristiques les plus importantes de l'économie agraire; Le secteur de l'élevage assure la durabilité et la stabilité de l'économie nationale en contribuant à l'énergie agricole et à la sécurité alimentaire. Le changement climatique est considéré comme une menace majeure pour la survie de nombreuses espèces, écosystèmes et la durabilité des systèmes de production animale dans de nombreuses régions du monde. Les gaz à effet de serre (GES) sont rejetés dans l'atmosphère à la fois par des sources naturelles et par des activités anthropiques (liées à l'homme). L'impact du changement climatique peut accroître la vulnérabilité des systèmes de bétail et exacerber les tensions existantes sur eux, telles que la sécheresse. Les parasites et les maladies sont parmi les facteurs les plus graves qui ont un impact sur la production et la reproduction du bétail, un impact sur la santé du bétail, un impact sur les aliments et la disponibilité du fourrage, la réduction du cheptel et l'impact du changement climatique sur les ressources génétiques du bétail. Cependant, le changement climatique, en particulier le réchauffement climatique, peut fortement influencer les performances de production des animaux d'élevage à travers le monde, ce qui entraîne une baisse de la production et de la productivité animales.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3127
Author(s):  
Amira A. Goma ◽  
Clive J. C. Phillips

Egypt is one of the hottest countries in the world, and extreme climate events are becoming more frequent, which is consistent with the warming of the planet. The impact of this warming on ecosystems is severe, including on livestock production systems. Under Egyptian conditions, livestock already suffer heat stress periods in summer. The predicted increases in temperature as result of climate change will affect livestock production by reducing growth and milk production because of appetite suppression and conception rate reductions and will increase animal welfare concerns. In severe cases, these effects can result in death. We review the heat stress effects on livestock behaviour, reproduction, and production in the context of predicted climate change for Egypt over the course of this century and offer alternative scenarios to achieve food security for a growing human population. As an example, we combine predictions for reduced milk production during heat stress and human population trajectories to predict that milk availability per person will decline from 61 kg/year in 2011 to 26 kg/year in 2064. Mitigation strategies are discussed and include the substitution of animal-based foods for plant-based foods and laboratory-grown animal products.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1287
Author(s):  
Edward Narayan ◽  
Michelle Barreto ◽  
Georgia-Constantina Hantzopoulou ◽  
Alan Tilbrook

In this retrospective study, we conducted a desktop-based analysis of published literature using the ScienceDirect™ search engine to determine the proportion of livestock research within the last 7 years (2015–2021) that have applied animal welfare assessment combining objective measures of physiological stress and evaluation of climate change factors in order to provide an account of livestock productivity. From the search results, 563 published articles were reviewed. We found that the majority of the literature had discussed animal production outcomes (n = 491) and animal welfare (n = 453) either individually or in conjunction with another topic. The most popular occurrence was the combination of animal welfare assessment, objective measures of stress physiology and production outcomes discussed collectively (n = 218). We found that only 125 articles had discussed the impact of climate change (22.20%) on livestock production and/or vice versa. Furthermore, only 9.4% (n = 53) of articles had discussed all four factors and published research was skewed towards the dairy sector. Overall, this retrospective paper highlights that although research into animal welfare assessment, objective measures of stress and climate change has been applied across livestock production systems (monogastrics and ruminants), there remains a shortfall of investigation on how these key factors interact to influence livestock production. Furthermore, emerging technologies that can boost the quantitative evaluation of animal welfare are needed for both intensive and extensive production systems.


2010 ◽  
Vol 2009 (1) ◽  
pp. 115-133
Author(s):  
CJ Stokes ◽  
SM Howden ◽  
AJ Ash

2012 ◽  
Vol 63 (3) ◽  
pp. 191 ◽  
Author(s):  
Beverley Henry ◽  
Ed Charmley ◽  
Richard Eckard ◽  
John B. Gaughan ◽  
Roger Hegarty

Climate change presents a range of challenges for animal agriculture in Australia. Livestock production will be affected by changes in temperature and water availability through impacts on pasture and forage crop quantity and quality, feed-grain production and price, and disease and pest distributions. This paper provides an overview of these impacts and the broader effects on landscape functionality, with a focus on recent research on effects of increasing temperature, changing rainfall patterns, and increased climate variability on animal health, growth, and reproduction, including through heat stress, and potential adaptation strategies. The rate of adoption of adaptation strategies by livestock producers will depend on perceptions of the uncertainty in projected climate and regional-scale impacts and associated risk. However, management changes adopted by farmers in parts of Australia during recent extended drought and associated heatwaves, trends consistent with long-term predicted climate patterns, provide some insights into the capacity for practical adaptation strategies. Animal production systems will also be significantly affected by climate change policy and national targets to address greenhouse gas emissions, since livestock are estimated to contribute ~10% of Australia’s total emissions and 8–11% of global emissions, with additional farm emissions associated with activities such as feed production. More than two-thirds of emissions are attributed to ruminant animals. This paper discusses the challenges and opportunities facing livestock industries in Australia in adapting to and mitigating climate change. It examines the research needed to better define practical options to reduce the emissions intensity of livestock products, enhance adaptation opportunities, and support the continued contribution of animal agriculture to Australia’s economy, environment, and regional communities.


2008 ◽  
Vol 42 ◽  
pp. 3-24 ◽  
Author(s):  
C. Seré ◽  
A. van der Zijpp ◽  
G. Persley ◽  
E. Rege

SummaryThis overview analyses the key drivers of change in the global livestock sector and assesses how they are influencing current trends and future prospects in the world's diverse livestock production systems and market chains; and what are their consequent impacts on the management of animal genetic resources for food and agriculture. The trends are occurring in both developing and industrialized countries, but the responses are different. In the developing world, the trends are affecting the ability of livestock to contribute to improving livelihoods and reducing poverty as well as the use of natural resources. In the industrialized world, the narrowing animal genetic resource base in industrial livestock production systems raises the need to maintain a broader range of animal genetic resources to be able to deal with future uncertainties, such as climate change and zoonotic diseases.This chapter discusses:• What are the global drivers of change for livestock systems? Economic development and globalization; changing market demands and the “livestock revolution”; environmental impacts including climate change; and science and technology trends.• How are the livestock production systems responding to the global drivers of change? Trends in the three main livestock production systems (industrial, crop-livestock and pastoral systems); the range and rate of changes occurring in different systems and how these affect animal genetic resources. The implications are that breeds cannot adapt in time to meet new circumstances. Hence new strategies and interventions are necessary to improve the management of animal genetic resources in situations where these genetic resources are most at risk.• What are the implications for animal genetic resources diversity and for future prospects of their use? - Industrial livestock production systems are expected to have a limited demand for biodiversity, while crop-livestock and pastoral systems will rely on biodiversity to produce genotypes of improved productivity under changing environmental and socio-economic conditions. All systems will rely on biodiversity, albeit to varying degrees, to cope with expected climate change.• What immediate steps are possible to improve animal genetic resources characterization, use and conservation? Appropriate institutional and policy frameworks are required to improve animal genetic resources management and these issues are being addressed at national and intergovernmental levels, in a process led by FAO to promote greater international collaboration on animal genetic resources. Based on an analysis of the current situation, the continuing loss of indigenous breeds and new developments in science and technology, there are several complementary actions that can begin to improve the management of animal genetic resources and maintain future options in an uncertain world.These are summarized here as:a. “Keep it on the hoof” - Encouraging the continuing sustainable use of traditional breeds and in situ conservation by providing market-driven incentives, public policy and This paper has benefited from inputs from several reviewers and other contributors, and we thank all for their thoughtful insights. We acknowledge the contributions of our colleagues at FAO, particularly Irene Hoffmann, Dafydd Pilling and Henning Steinfeld, and at the International Livestock Research Institute (ILRI): Ade Freeman, Mario Herrero, Olivier Hanotte, Steve Kemp, Sandy McClintock, Sara McClintock, Margaret MacDonald-Levy, Susan MacMillan, Grace Ndungu, An Notenbaert, Mwai Okeyo and Robin Reid. other support to enable livestock keepers to maintain genetic diversity in their livestock populations.b. “Move it or lose it” - Enabling access to and the safe movement of animal genetic resources within and between countries, regions and continents is a key factor in use, development and conservation of animal genetic resources globally.c. “Match breeds to environments” - Understanding the match between livestock populations, breeds and genes with the physical, biological and economic landscape. This “landscape livestock genomics” approach offers the means to predict the genotypes most appropriate to a given environment and, in the longer term, to understand the genetic basis of adaptation of the genotype to the environment.d. “Put some in the bank” — New technologies make ex situ, in vitro conservation of animal genetic resources feasible for critical situations and are a way to provide long-term insurance against future shocks.The multiple values, functions and consequences of livestock production systems and their rapid rate of change lead to divergent interests within and between countries. Conversely, the uncertainty about the implications of rapid, multifaceted global change for each livestock production system and the resulting future changes in the required genetic make-up of animal genetic resources make collective action to tackle conservation of animal genetic resources a long-term, global public good. Conserving animal genetic resources will not by itself solve these problems, but it is an important first step towards maintaining future options.Advances in science and the technology, in areas such as reproductive technology, genomics and spatial analysis, as well as progress in conceptualization of global public good production for the future management of animal genetic resources, should enable the international community to address both the short- and long-term challenges in innovative ways.


Sign in / Sign up

Export Citation Format

Share Document