scholarly journals Climate Change Impacts on Livestock Production Systems: A Review

2014 ◽  
pp. 148-189
Author(s):  
Angie Poliquit

The socio-economic contribution of livestock production to global livelihood and food security offsets its negative effects on the environment through greenhouse gas (GHG) emission. Livestocks are emitters of GHGs, carbon dioxide (CO2) from land conversion and deforestation, nitrous oxide (N2O) from manure and slurry, and methane (CH4) from animal digestion which significantly contribute to climate change. Climate change has both direct and indirect impacts on animal farming. Thus, the main concern nowadays is toward the development of programs for adaptation and mitigation of GHG emissions. This review provides knowledge about climate change impacts on livestock production systems with the identification of strategies for livestock adaptation to climate change and mitigation of GHG emissions.

2010 ◽  
Vol 148 (5) ◽  
pp. 543-552 ◽  
Author(s):  
P. SMITH ◽  
J. E. OLESEN

SUMMARYThere is a very significant, cost effective greenhouse gas (GHG) mitigation potential in agriculture. The annual mitigation potential in agriculture is estimated to be 4200, 2600 and 1600 Mt CO2 equiv/yr at C prices of 100, 50 and 20 US$/t CO2 equiv, respectively. The value of GHG mitigated each year is equivalent to 420 000, 130 000 and 32 000 million US$/yr for C prices of 100, 50 and 20 US$/t CO2 equiv, respectively. From both the mitigation and economic perspectives, we cannot afford to miss out on this mitigation potential.The challenge of agriculture within the climate change context is two-fold, both to reduce emissions and to adapt to a changing and more variable climate. The primary aim of the mitigation options is to reduce emissions of methane or nitrous oxide or to increase soil carbon storage. All the mitigation options, therefore, affect the carbon and/or nitrogen cycle of the agroecosystem in some way. This often not only affects the GHG emissions but also the soil properties and nutrient cycling. Adaptation to increased variability of temperature and rainfall involves increasing the resilience of the production systems. This may be done by improving soil water holding capacities through adding crop residues and manure to arable soils or by adding diversity to the crop rotations.Though some mitigation measures may have negative impacts on the adaptive capacity of farming systems, most categories of adaptation options for climate change have positive impacts on mitigation. These include: (1) measures that reduce soil erosion, (2) measures that reduce leaching of nitrogen and phosphorus, (3) measures for conserving soil moisture, (4) increasing the diversity of crop rotations by choices of species or varieties, (5) modification of microclimate to reduce temperature extremes and provide shelter, (6) land use change involving abandonment or extensification of existing agricultural land, or avoidance of the cultivation of new land. These adaptation measures will in general, if properly applied, reduce GHG emissions, by improving nitrogen use efficiencies and improving soil carbon storage.There appears to be a large potential for synergies between mitigation and adaptation within agriculture. This needs to be incorporated into economic analyses of the mitigation costs. The inter-linkages between mitigation and adaptation are, however, not very well explored and further studies are warranted to better quantify short- and long-term effects on suitability for mitigation and adaptation to climate change. In order to realize the full potential for agriculture in a climate change context, new agricultural production systems need to be developed that integrate bioenergy and food and feed production systems. This may possibly be obtained with perennial crops having low-environmental impacts, and deliver feedstocks for biorefineries for the production of biofuels, biomaterials and feed for livestock.


2019 ◽  
Vol 11 (18) ◽  
pp. 4998 ◽  
Author(s):  
Federica Borgonovo ◽  
Cecilia Conti ◽  
Daniela Lovarelli ◽  
Valentina Ferrante ◽  
Marcella Guarino

Ammonia (NH3), methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions from livestock farms contribute to negative environmental impacts such as acidification and climate change. A significant part of these emissions is produced from the decomposition of slurry in livestock facilities, during storage and treatment phases. This research aimed at evaluating the effectiveness of the additive “SOP LAGOON” (made of agricultural gypsum processed with proprietary technology) on (i) NH3 and Greenhouse Gas (GHG) emissions, (ii) slurry properties and N loss. Moreover, the Life Cycle Assessment (LCA) method was applied to assess the potential environmental impact associated with stored slurry treated with the additive. Six barrels were filled with 65 L of cattle slurry, of which three were used as a control while the additive was used in the other three. The results indicated that the use of the additive led to a reduction of total nitrogen, nitrates, and GHG emissions. LCA confirmed the higher environmental sustainability of the scenario with the additive for some environmental impact categories among which climate change. In conclusion, the additive has beneficial effects on both emissions and the environment, and the nitrogen present in the treated slurry could partially displace a mineral fertilizer, which can be considered an environmental credit.


2017 ◽  
Vol 6 (2) ◽  
pp. 66 ◽  
Author(s):  
Maria Storrle ◽  
Hans-Jorg Brauckmann ◽  
Gabriele Broll

This study investigates the amounts of greenhouse gas (GHG) emissions due to manure handling within different livestock production systems in Tyumen oblast of Western Siberia. Tyumen oblast occupies approx. 160 000 km² of Asian taiga and forest steppe. The amount of GHGs from manure was calculated as a function of the handling according to current IPCC guidelines for ecozones and livestock production systems. The entire Tyumen oblast has annual 7 400 t methane emissions and 440 t nitrous oxide emissions from manure. Three livestock production systems are prevalent in Tyumen oblast: Mega farms, small farms and peasant farms. The share of mega farms is 81 % (171 kt CO2 eq). Additionally, the slurry system in mega farms causes environmental pollution. GHG emissions and environmental pollution could be reduced by implementing solid manure systems or pasturing, by installing storage facilities for slurry outside the stables and through application of the manure as fertiliser at mega farms. In small farms solid manure systems and a small stocking density of livestock lead to smallest GHG emissions (1 %, 3 kt CO2 eq) from manure. In peasant farming 18 % (38 kt CO2 eq) of GHGs are emitted due to pasturing. 


2021 ◽  
Vol 4 (2) ◽  
pp. 1100-1107
Author(s):  
Nguyen Van Phu

Climate change is one of the greatest threats to human beings, and agriculture is one of the fields that is most negatively affected by climate change. Farmers around the world and global food supply chains are impacted by the more extreme weather phenomena and increased damage of diseases and pests caused by climate change. Today, almost all agricultural enterprises and farms consider climate change a serious long-term risk for their production. Agricultural land systems can produce significant greenhouse gases (GHGs) by the conversion of forests to crop- and animal lands, and also through the weak management of crops and livestock. Around the world, cultivation and cattle production accounts for 25% of global GHG emissions (Javeline, ‎2014). However, under suitable conditions, agriculture can create environmental conditions that can help minimize pollution and the negative effects of climate change including carbon absorption by green plants in forests, and fields for watershed protection and biodiversity conservation. Sustainable agriculture helps farmers to adapt, maintain, and improve productivity without applying harmful techniques. In turn, this allows farms to manage and mitigate climate-related risks in their supply chains. The Sustainable Agriculture Network (SAN) has found new ways to incorporate smart climate cultivation methods into all farming practices to help farms and enterprises carry out agriculture sustainably.


2020 ◽  
Vol 4 ◽  
Author(s):  
Stewart A. Jennings ◽  
Ann-Kristin Koehler ◽  
Kathryn J. Nicklin ◽  
Chetan Deva ◽  
Steven M. Sait ◽  
...  

The contribution of potatoes to the global food supply is increasing—consumption more than doubled in developing countries between 1960 and 2005. Understanding climate change impacts on global potato yields is therefore important for future food security. Analyses of climate change impacts on potato compared to other major crops are rare, especially at the global scale. Of two global gridded potato modeling studies published at the time of this analysis, one simulated the impacts of temperature increases on potential potato yields; the other did not simulate the impacts of farmer adaptation to climate change, which may offset negative climate change impacts on yield. These studies may therefore overestimate negative climate change impacts on yields as they do not simultaneously include CO2 fertilisation and adaptation to climate change. Here we simulate the abiotic impacts of climate change on potato to 2050 using the GLAM crop model and the ISI-MIP ensemble of global climate models. Simulations include adaptations to climate change through varying planting windows and varieties and CO2 fertilisation, unlike previous global potato modeling studies. Results show significant skill in reproducing observed national scale yields in Europe. Elsewhere, correlations are generally positive but low, primarily due to poor relationships between national scale observed yields and climate. Future climate simulations including adaptation to climate change through changing planting windows and crop varieties show that yields are expected to increase in most cases as a result of longer growing seasons and CO2 fertilisation. Average global yield increases range from 9 to 20% when including adaptation. The global average yield benefits of adaptation to climate change range from 10 to 17% across climate models. Potato agriculture is associated with lower green house gas emissions relative to other major crops and therefore can be seen as a climate smart option given projected yield increases with adaptation.


2012 ◽  
Vol 4 (6) ◽  
pp. 1336 ◽  
Author(s):  
Daniele Cesano ◽  
Emilio Lèbre La Rovere ◽  
Martin Obermaier ◽  
Thais Corral ◽  
Laise Santos da Silva ◽  
...  

Este artigo descreve a experiência da coalizão Adapta Sertão na experimentação e disseminação de sistemas produtivos que possam tornar o agricultor familiar do Semiárido mais resiliente aos impactos da variação climática atual e da mudança do clima no futuro. Durante as experimentações, a coalizão teve que enfrentar várias barreiras ligadas à falta de integração entre políticas públicas existentes e projetos pilotos em comunidades locais. Hoje, a adaptação à mudança do clima não está sendo considerada na implementação de obras hídricas de pequeno e médio porte, que são de grande importância porque, geralmente, conseguem beneficiar as faixas de população mais pobres e mais suscetíveis aos impactos climáticos. As experiências mostram que é preciso desenvolver, com urgência, políticas públicas inovadoras que consigam integrar o acesso à água com a disseminação de tecnologias de adaptação e de sistemas produtivos mais resilientes à seca.  Palavras - chave: medidas de adaptação, agricultura familiar, semiárido, tecnologia.  The experience of the Adapta Sertão Coalition in Disseminating Climate Change Adaptation Technologies and Strategies for Family Farmers in Semi Arid Brazil  ABSTRACTThis paper describes the experience of the Adapta Sertão coalition in testing and experimenting production systems that have the potential to make small farmers of semi-arid Brazil more resilient to current and future climate change impacts. During the different testing, the coalition had to overcome several barriers linked to a lack of integration between current public policies. For example, today climate change is not considered in the design and implementation of small and medium hydraulic infrastructures. This limits the benefits to the target groups (small farmers) that are more likely to be affected by climate change. The experiences show that it is urgent and necessary to develop public policies to better integrate access to water, dissemination of climate resilient technologies and implementation of production systems more adequate to the semi arid conditions.  Keywords: adaptation measures, family farming, semi-arid, technology.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 305 ◽  
Author(s):  
Elena Sesana ◽  
Alexandre Gagnon ◽  
Chiara Bertolin ◽  
John Hughes

Changes in rainfall patterns, humidity, and temperature, as well as greater exposure to severe weather events, has led to the need for adapting cultural heritage to climate change. However, there is limited research accomplished to date on the process of adaptation of cultural heritage to climate change. This paper examines the perceptions of experts involved in the management and preservation of cultural heritage on adaptation to climate change risks. For this purpose, semi-structured interviews were conducted with experts from the UK, Italy, and Norway as well as a participatory workshop with stakeholders. The results indicate that the majority of interviewees believe that adaptation of cultural heritage to climate change is possible. Opportunities for, barriers to, and requirements for adapting cultural heritage to climate change, as perceived by the interviewees, provided a better understanding of what needs to be provided and prioritized for adaptation to take place and in its strategic planning. Knowledge of management methodologies incorporating climate change impacts by the interviewees together with best practice examples in adapting cultural heritage to climate change are also reported. Finally, the interviewees identified the determinant factors for the implementation of climate change adaptation. This paper highlights the need for more research on this topic and the identification and dissemination of practical solutions and tools for the incorporation of climate change adaptation in the preservation and management of cultural heritage.


2017 ◽  
pp. 1351-1365
Author(s):  
Bhupen Mili ◽  
Anamika Barua ◽  
Suparana Katyaini

Climate Change impacts would disproportionately have larger impacts on the developing countries. Both government and development agencies have initiated various adaptation strategies in the developing countries to enhance the adaptation of the local communities. Various policies and programmes have been designed keeping in mind the impact of climate change. This study was conducted in Darjeeling district of West Bengal, India, to see the benefits of such policies and programmes. Focus group discussion with community members were held in the study area. Based on the fieldwork it was seen that most of the intervention made in the study area focused on income, resources, and assets. It has failed to benefits the people due to variation in the capability among various section of the society. Various projects related to health, education, housing, and livelihood, have been implemented in the study region. However, due to lack of conversion factors in the form of gender inequality, discriminatory practices, transparency among others have come as a hindrance in the successful implementation of the projects. Hence, such project-based approach to enhance community's adaptation to climate risk, in the end fails to show benefits as it fails to expand community's capabilities and real freedom, due to the project's pre-defined aims. It is important to understand community's as agent of change rather than merely beneficiaries of adaptation projects. This study therefore recommends that to enhance community's adaptation to climate change, the interventions should be such that it enlarges the range of people's choices so that when climate disaster strikes them they will have a set of opportunities.


Sign in / Sign up

Export Citation Format

Share Document