scholarly journals An efficient micropropagation protocol of Bacopa monnieri (L.) Pennell through two-stage culture of nodal segments and ex vitro acclimatization

2018 ◽  
Vol 118 ◽  
pp. 984-992 ◽  
Author(s):  
Lucas A. Martín ◽  
Cecilia A. Popovich ◽  
Ana M. Martínez ◽  
Paola G. Scodelaro Bilbao ◽  
María C. Damiani ◽  
...  

2018 ◽  
Vol 77 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Mahipal S. Shekhawat ◽  
M. Manokari

AbstractHybanthus enneaspermusis a rare medicinal plant. We defined a protocol for micropropagation,ex vitrorooting of cloned shoots and their acclimatization. Surface-sterilized nodal segments were cultured on Murashige and Skoog (MS) medium with different concentrations of 6-benzylaminopurine (BAP) and kinetin (Kin). Medium supplemented with 1.5 mg L−1BAP was found optimum for shoot induction from the explants and 6.4±0.69 shoots were regenerated from each node with 97% response. Shoots were further proliferated maximally (228±10.3 shoots per culture bottle with 7.5±0.43 cm length) on MS medium augmented with 1.0 mg L−1each of BAP and Kin within 4–5 weeks. The shoots were rootedin vitroon half strength MS medium containing 2.0 mg L−1indole-3 butyric acid (IBA). The cloned shoots were pulse-treated with 300 mg L–1 of IBA and cultured on soilrite® in a greenhouse. About 96% of the IBA-pulsed shoots rootedex vitroin soilrite®, each shoot producing 12.5±0.54 roots with 5.1±0.62 cm length. Theex vitrorooted plantlets showed a better rate of survival (92%) in a field study thanin vitrorooted plantlets (86%). A comparative foliar micromorphological study ofH. enneaspermuswas conducted to understand the micromorphological changes during plant developmental processes fromin vitrotoin vivoconditions in terms of variations in stomata, vein structures and spacing, and trichomes. This is the first report onex vitrorooting inH. enneaspermusand the protocol can be exploited for conservation and large-scale propagation of this rare and medicinally important plant.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1657
Author(s):  
Nqobile P. Hlophe ◽  
Adeyemi O. Aremu ◽  
Karel Doležal ◽  
Johannes Van Staden ◽  
Jeffrey F. Finnie

In Africa and Asia, members of the genus Brachystelma are well-known for their diverse uses, especially their medicinal and nutritional values. However, the use of many Brachystelma species as a valuable resource is generally accompanied by the concern of over-exploitation attributed to their slow growth and general small size. The aim of the current study was to establish efficient micropropagation protocols for three Brachystelma species, namely Brachystelma ngomense (endangered), Brachystelma pulchellum (vulnerable) and Brachystelma pygmaeum (least concern), as a means of ensuring their conservation and survival. This was achieved using nodal segments (~10 mm in length) as the source of explants in the presence of different concentrations of three cytokinins (CK) namely N6-benzyladenine (BA), isopentenyladenine (iP) and meta-topolin riboside (mTR), over a period of 6 weeks. The highest (25 µM) concentration of cytokinin treatments typically resulted in significantly higher shoot proliferation. However, each species differed in its response to specific CK: the optimal concentrations were 25 µM mTR, 25 µM iP and 25 µM BA for Brachystelma ngomense, Brachystelma pulchellum and Brachystelma pygmaeum, respectively. During the in vitro propagation, both Brachystelma ngomense and Brachystelma pygmaeum rooted poorly while regenerated Brachystelma pulchellum generally lacked roots regardless of the CK treatments. Following pulsing (dipping) treatment of in vitro-regenerated shoots with indole-3-butyric acid (IBA), acclimatization of all three Brachystelma species remained extremely limited due to poor rooting ex vitro. To the best of our knowledge, the current protocols provide the first successful report for these Brachystelma species. However, further research remains essential to enhance the efficiency of the devised protocol.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7966 ◽  
Author(s):  
Phithak Inthima ◽  
Kawee Sujipuli

Bacopa monnieri is a medicinal herb that is increasing in demand in Thailand. However, the lack of high-bacoside cultivars has limited pharmaceutical utilization and production. Here, chromosome doubling in B. monnieri was attempt to improve biomass and bacoside content in its seedling. Nodal segments were treated with colchicine (0, 0.025, 0.05, 0.075, 0.1, and 0.5% w/v) for 24 or 48 h before transferring to multiple shoot induction medium (1/2 MS medium supplemented with 0.2 mg L−1 BAP). Of 326 tested clones, 18 and 84 were mixoploids and autotetraploids, respectively. The highest autotetraploid-induction percentage (14.6%) was found after treated with 0.5% (w/v) colchicine, and 48 hours exposure. From 28 selected autotetraploid clones, 21 and 13 have significantly higher fresh and dry weight compared to the diploid clone, respectively. The maximum fresh and dry weight of autotetraploid plants was 2.8 and 2.0-time higher than diploid plants, respectively. Moreover, the maximum total bacoside content (1.55 mg plant−1) was obtained from an autotetraploid plant, which was 2.3-fold higher than the level in diploid plants. These novel autotetraploids have the potential to be developed as resources for value-added improvements in the medicinal and pharmaceutical industries.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5888
Author(s):  
Desislava I. Mantovska ◽  
Miroslava K. Zhiponova ◽  
Milen I. Georgiev ◽  
Tsvetinka Grozdanova ◽  
Dessislava Gerginova ◽  
...  

Micropropagation of rare Veronica caucasica M. Bieb. was achieved by successful in vitro cultivation of mono-nodal segments on MS medium supplemented with 1.0 mg L–1 6-benzylaminopurine (BA) and then transferring the regenerated plants on hormone free basal MS medium for root development. In vitro multiplicated plants were successively acclimated in a growth chamber and a greenhouse with 92% survival. The number of plastid pigments and the total phenolics content in in vitro cultivated and ex vitro adapted plants were unchanged, and no accumulation of reactive oxygen species (ROS) was detected by staining with 3-3′-diaminobenzidine (DAB) and 2′,7′-dichlorofluorescein diacetate (DCF-DA). Nuclear Magnetic Resonance (NMR) fingerprinting allowed for the identification of the major alterations in metabolome of V. caucasica plants during the process of ex situ conservation. Iridoid glucosides such as verproside, aucubin and catalpol were characteristic for in vitro cultivated plants, while in ex vitro acclimated plants phenolic acid–protocatechuic acid and caffeic acid appeared dominant. The successful initiation of in vitro and ex vitro cultures is an alternative biotechnological approach for the preservation of V. caucasica and would allow for further studies of the biosynthetic potential of the species and the selection of lines with a high content of pharmaceutically valuable molecules and nutraceuticals.


2020 ◽  
Vol 29 (1) ◽  
pp. eSC04
Author(s):  
Anabel-Viviana Di-Gaudio ◽  
Esteban Tubert ◽  
Leandro-Ezequiel Laino ◽  
Jose-María Chaín ◽  
Sandra-Irene Pitta-Alvarez ◽  
...  

Aim of the study: We developed a faster micropropagation protocol specifically designed for Eucalyptus grandis. Eucalyptus breeding programs use micropropagation protocols to obtain high quality cloned seedlings, but current protocols are excessively time consuming.Area of the study: The protocol has been developed in Argentina, but it can be applied in anywhere.Materials and methods: We used nodal segments as initial explants to obtain micropropagated shoots, which were then simultaneously rooted ex vitro and acclimated in a hydroponic system. Nodal segments were cultured in a MS medium supplemented with 1 mg l-1 6-benzylaminopurine, 30 g l-1 sucrose, 1 g l-1 active charcoal and 8 g l-1 agar and incubated for four weeks at 25 ± 2°C under 16 h day photoperiod. Then, micropropagated shoots were exposed 15 seconds to 5000 ppm indol-butyric acid prior to being transferred to a hydroponic system, allowing simultaneous ex vitro rooting and acclimatization.Main results: 73 ± 9% of nodal segments grew to generate 1.73 ± 1.03 shoots per explant (length: 0.76 ± 0.44 cm). After four weeks in hydroponic system, 46 ± 4 % of micropropagated shoots developed roots, which represents an acceptable and intermediate rate of success, compared to the reported in vitro rooting rates.Research highlights: Our protocol allowed to obtain micropropagated seedlings in a total timespan of 8 weeks. Our results show that, by utilizing a hydroponic system, traditional protocols to micropropagate Eucalyptus can be substantially enhanced, allowing for improved production dynamics and potentially resulting in better organized seedling manufacturing facilities.Keywords: Woody plants; silviculture; nursery seedlings; rooting methods; hydroponics; acclimatization.


Sign in / Sign up

Export Citation Format

Share Document